ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative understanding of the relationship between quantum tunneling and Fermi surface spin polarization is key to device design using topological insulator surface states. By using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films across the metal-to-insulator transition, we observe that for a given film thickness, the spin polarization is large for momenta far from the center of the surface Brillouin zone. In addition, the polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. Our theoretical model calculations capture this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
We have performed a systematic photoemission study of the chemical potential shift as a function of carrier doping in a pnictide system based on BaFe$_2$As$_2$. The experimentally determined chemical potential shift is consistent with the prediction of a rigid band shift picture by the renormalized first-principle band calculations. This leads to an electron-hole asymmetry (EHA) in the Fermi surface (FS) nesting condition due to different effective masses for different FS sheets, which can be calculated from the Lindhard function of susceptibility. This built-in EHA from the band structure, which matches well with observed asymmetric superconducting domes in the phase diagram, strongly supports FS near-nesting driven superconductivity in the iron pnictides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا