ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform a lattice study of charmonium-like mesons with $J^{PC}=1^{++}$ and three quark contents $bar cc bar du$, $bar cc(bar uu+bar dd)$ and $bar cc bar ss$, where the later two can mix with $bar cc$. This simulation with $N_f=2$ and $m_pi=266$ Me V aims at the possible signatures of four-quark exotic states. We utilize a large basis of $bar cc$, two-meson and diquark-antidiquark interpolating fields, with diquarks in both anti-triplet and sextet color representations. A lattice candidate for X(3872) with I=0 is observed very close to the experimental state only if both $bar cc$ and $Dbar D^*$ interpolators are included; the candidate is not found if diquark-antidiquark and $Dbar D^*$ are used in the absence of $bar cc$. No candidate for neutral or charged X(3872), or any other exotic candidates are found in the I=1 channel. We also do not find signatures of exotic $bar ccbar ss$ candidates below 4.3 GeV, such as Y(4140). Possible physics and methodology related reasons for that are discussed. Along the way, we present the diquark-antidiquark operators as linear combinations of the two-meson operators via the Fierz transformations.
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con tinuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) $otimes$ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con tinuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$otimes$O(3) symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا