ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two no-chiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms as matter fields by a global $U(1)$ gauge symmetry. To the aim to deal with consistent terms without breaking the global $U(1)$ symmetry it imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminate the extra degrees of freedom consistently with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Procas type field, for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the firsts steps to extend the analysis of charged massive vector field in a supersymmetric scenario.
The main purpose of this work is to show that massless Dirac equation formulated for non-interacting Majorana-Weyl spinors in higher dimensions, particularly in D=1+9 and D=5+5, can lead to an interpretation of massive Majorana and Dirac spinors in D =1+3. By adopting suitable representations of the Dirac matrices in higher dimensions, we pursue the investigation of which higher dimensional space-times and which mass-shell relation concerning massless Dirac equations in higher dimensions may induce massive spinors in D=1+3. The mixing of the chiral fermions in higher dimensions may induce a mechanism such that four massive Majorana fermions may show up and, at an appropriate limit an almost zero and a huge mass show up with corresponding left-handed and right-handed eigenstates. This mechanism, in a peculiar way, could reassess the See-Saw scheme associated to neutrino with Majorana-type masses. Remarkably the masses of the particles are fixed by the dimension decoupling/reduction scheme based on the mass Lorentz invariant term, where one set of the decoupled dimensions are the target coordinates frame and the other set of coordinates is the composing block of the mass term in lower dimensions. This proposal should allow us to understand the generation of hierarchies, such as the fourth generation, for the fermionic masses in D=1+3, or in lower dimensions in general, starting from the constraints between the energy and the momentum in D=n+n. For the initial D=5+5 Majorana-Weyl spinors framework using the Weyl representation to the Dirac matrices we observe an intriguing decomposition of space-time that result in two very equivalent D=1+4 massive spinors which mass term, in D=1+3 included, is originated from the remained/decoupled component and that could induce a Brane-World mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا