ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductorUCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H//b linear at low magnetic field a nd quadratic for magnetic field larger than 1 Tesla. At the same field value, a plateau appears in the field dependency of the residual term of thermal conductivity. Such observations suggest a multigap superconductivity with a line of nodes in the superconducting gap.
In the tetragonal heavy fermion system CeCoIn5 the unconventional superconducting state is probed by means of muon spin rotation. The pressure dependence (0-1 GPa) of the basal-plane magnetic penetration depth (lambda_a), the penetration depth anisot ropy (gamma=lambda_c/lambda_a) and the temperature dependence of 1/lambda_i^2 (i=a,c) were studied in single crystals. A strong decrease of lambda_a with pressure was observed, while gamma and lambda_i^2(0)/lambda_i^2(T) are pressure independent. A linear relationship between 1/lambda_a^2(270 mK) and Tc was also found. The large decrease of lambda_a with pressure is the signature of an increase of the number of superconducting quasiparticles by a factor of about 2.
We present a detailed analysis of the upper critical field for CeCoIn5 under high pressure. We show that, consistently with other measurements, this system shows a decoupling between maximum of the superconducting transition temperature Tc and maximu m pairing strength. This puts forward CeCoIn5 as an important paradigm for this class of unconventional, strongly correlated superconductors.
We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal pl ane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (rho propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا