ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exoplanet observations formed by a dozen golden systems for which observations will be available from the UV to the infrared. Only in this way we will be able to fully exploit JWST observations for exoplanet science, one of the key JWST science case.
The stellar parameters of RR Lyrae stars vary considerably over a pulsation cycle, and their determination is crucial for stellar modelling. We present a detailed spectroscopic analysis of the pulsating star RR Lyr, the prototype of its class, over a complete pulsation cycle, based on high-resolution spectra collected at the 2.7-m telescope of McDonald Observatory. We used simultaneous photometry to determine the accurate pulsation phase of each spectrum and determined the effective temperature, the shape of the depth-dependent microturbulent velocity, and the abundance of several elements, for each phase. The surface gravity was fixed to 2.4. Element abundances resulting from our analysis are stable over the pulsation cycle. However, a variation in ionisation equilibrium is observed around minimum radius. We attribute this mostly to a dynamical acceleration contributing to the surface gravity. Variable turbulent convection on time scales longer than the pulsation cycle has been proposed as a cause for the Blazhko effect. We test this hypothesis to some extent by using the derived variable depth-dependent microturbulent velocity profiles to estimate their effect on the stellar magnitude. These effects turn out to be wavelength-dependent and much smaller than the observed light variations over the Blazhko cycle: if variations in the turbulent motions are entirely responsible for the Blazhko effect, they must surpass the scales covered by the microturbulent velocity. This work demonstrates the possibility of a self-consistent spectroscopic analysis over an entire pulsation cycle using static atmosphere models, provided one takes into account certain features of a rapidly pulsating atmosphere.
Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest m embers of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD47887 and HD47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km/s) radial velocity variations, most likely caused by spots, we can rule out that HD47887 and HD47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD47887 and HD47777 to be 9.4+/-0.7 M0 and 7.6+/-0.5 M0. Interestingly, HD47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter.
Our understanding of magnetic fields in late-type stars is strongly driven by what we know of the solar magnetic field. For this reason, it is crucial to understand how typical the solar dynamo is. To do this we need to compare the solar magnetic fie ld with that of other stars as similar to the Sun as possible, both in stellar parameters and age, hence activity. We present here the detection of a magnetic field in three planet-hosting solar-like stars having a mass, age, and activity level comparable to that of the Sun. We used the HARPSpol spectropolarimeter to obtain high-resolution high-quality circularly polarised spectra of HD 70642, HD 117207, and HD 154088, using the Least-Squares Deconvolution technique to detect the magnetic field. From the Stokes I spectra, we calculated the logR activity index for each star. We compared the position of the stars in the Hertzsprung-Russell diagram to evolutionary tracks, to estimate their mass and age. We used the lithium abundance, derived from the Stokes I spectra, to further constrain the ages. We obtained a definite magnetic field detection for both HD 70642 and HD 154088, while for HD 117207 we obtained a marginal detection. Due to the lower signal-to-noise ratio of the observations, we were unable to detect the magnetic field in the second set of observations available for HD 117207 and HD 154088. On the basis of effective temperature, mass, age, and activity level the three stars can be considered solar analogs. HD 70642, HD 117207, and HD 154088 are ideal targets for a comparative study between the solar magnetic field and that of solar analogs.
Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the Continuous Habitable Zone (CHZ) for ~8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 10^2 (10^4) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M_sun white dwarf will be distorted by Roche geometry, and a Kepler-11d analogue would overfill its Roche lobe. With current facilities a Super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known cool white dwarf. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.
We present detailed parameter determinations of two chemically normal late A-type stars, HD 32115 and HD 37594, to uncover the reasons behind large discrepancies between two previous analyses of these stars performed with a semi-automatic procedure a nd a classical analysis. Our study is based on high resolution, high signal-to-noise spectra obtained at the McDonald Observatory. Our method is based on the simultaneous use of all available observables: multicolor photometry, pressure-sensitive magnesium lines, metallic lines and Balmer line profiles. Our final set of fundamental parameters fits, within the error bars, all available observables. It differs from the published results obtained with a semi-automatic procedure. A direct comparison between our new observational material and the spectra previously used by other authors shows that the quality of the data is not the origin of the discrepancies. As the two stars require a substantial macroturbulence velocity to fit the line profiles, we concluded that neglecting this additional broadening in the semi-automatic analysis is one origin of discrepancy. The use of FeI excitation equilibrium and of the Fe ionisation equilibrium, to derive effective temperature and surface gravity, respectively, neglecting all other indicators leads to a systematically erroneously high effective temperature. We deduce that the results obtained using only one parameter indicator might be biased and that those results need to be cautiously taken when performing further detailed analyses, such as modelling of the asteroseismic frequencies or characterising transiting exoplanets.
The current knowledge of the abundance pattern in delta Scuti stars is based on the analysis of just a few field stars. We aim to determine the general chemical properties of the atmospheres of delta Scuti stars based on a statistically relevant samp le of stars and will investigate whether the abundance pattern is close to solar, an assumption generally made for pulsation models. We have analysed high-resolution, high signal-to-noise ratio spectra of seven field delta Scuti stars. We derived the fundamental parameters and the photospheric abundances and compared them to a similar sample of cluster delta Scuti stars. With the use of a t-test we demonstrated that there is no difference between the two samples, which allows us to merge them, resulting in a sample of fifteen delta Scuti stars. We did not find any substantial difference between the abundance pattern of our sample of delta Scuti stars and a sample of normal early A- and late F-type stars. One field star in our sample, HD 124953, is most likely a pulsating Am star.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا