ترغب بنشر مسار تعليمي؟ اضغط هنا

Mensky has suggested to account for continuous measurement by attaching to a path integral a weight function centered around the classical path that the integral assigns a probability amplitude to. We show that in fact this weight function doesnt hav e to be viewed as an additional ingredient put in by hand. It can be derived instead from the conventional path integral if the infinitesimal term iepsilon in the propagator is made finite; the classical trajectory is proportional to the current.
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quant ities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density $L(f;x)$ for a set of fields $f$ is recast into a quasilocal expression $L_0(f;p,q)$ that depends on pairs of causally related points $p prec q$ and is a function of the values of $f$ in the Alexandrov set defined by those points, and whose limit as $p$ and $q$ approach a common point $x$ is $L(f;x)$. We then describe how to discretize $L_0(f;p,q)$, and use it to define a discrete action.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا