ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the fidelity approach to quantum critical points to study the zero temperature phase diagram of the one-dimensional Hubbard model. Using a variety of analytical and numerical techniques, we analyze the fidelity metric in various regions of the phase diagram, with particular care to the critical points. Specifically we show that close to the Mott transition, taking place at on-site repulsion U=0 and electron density n=1, the fidelity metric satisfies an hyper-scaling form which we calculate. This implies that in general, as one approaches the critical point U=0, n=1, the fidelity metric tends to a limit which depends on the path of approach. At half filling, the fidelity metric is expected to diverge as U^{-4} when U is sent to zero.
We analyze the Bures metric over the manifold of thermal density matrices for systems featuring a zero temperature quantum phase transition. We show that the quantum critical region can be characterized in terms of the temperature scaling behavior of the metric tensor itself. Furthermore, the analysis of the metric tensor when both temperature and an external field are varied, allows to complement the understanding of the phase diagram including cross-over regions which are not characterized by any singular behavior. These results provide a further extension of the scope of the metric approach to quantum criticality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا