ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still un clear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the $J = 1rightarrow 0$ transitions of $^{12}$CO, $^{13}$CO, C$^{18}$O, and C$^{17}$O, and detect emission from all isotopologues. We do not detect the $0_0rightarrow 1_{-1} E$ masing lines of CH$_3$OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of $< 1.5, {rm km, s^{-1}}$. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. H$alpha$ emission shows that RCW120 is leaking $sim5%$ of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse halo from leaked photons not associated with discrete holes in the PDR. Overall $25pm10%$ of all ionizing photons are leaking into the nearby ISM.
Because of their relatively simple morphology, bubble HII regions have been instrumental to our understanding of star formation triggered by HII regions. With the far-infrared (FIR) spectral coverage of the Herschel satellite, we can access the wavel engths where these regions emit the majority of their energy through their dust emission. At Herschel wavelengths 70 micron to 500 micron, the emission associated with HII regions is dominated by the cool dust in their photodissociation regions (PDRs). We find average dust temperatures of 26K along the PDRs, with little variation between the HII regions in the sample, while local filaments and infrared dark clouds average 19K and 15K respectively. Higher temperatures lead to higher values of the Jeans mass, which may affect future star formation. The mass of the material in the PDR, collected through the expansion of the HII region, is between ~300 and ~10,000 Solar masses for the HII regions studied here. These masses are in rough agreement with the expected masses swept up during the expansion of the hii regions. Approximately 20% of the total FIR emission is from the direction of the bubble central regions. This suggests that we are detecting emission from the near-side and far-side PDRs along the line of sight and that bubbles are three-dimensional structures. We find only weak support for a relationship between dust temperature and beta, of a form similar to that caused by noise and calibration uncertainties alone.
Context. RCW 120 is a well-studied, nearby Galactic HII region with ongoing star formation in its surroundings. Previous work has shown that it displays a bubble morphology at mid-infrared wavelengths and has a massive layer of collected neutral mate rial seen at sub-mm wavelengths. Given the well-defined photo-dissociation region (PDR) boundary and collected layer, it is an excellent laboratory to study the collect and collapse process of triggered star formation. Using Herschel Space Observatory data at 100, 160, 250, 350, and 500 micron, in combination with Spitzer and APEX-LABOCA data, we can for the first time map the entire spectral energy distribution of an HII region at high angular resolution. Aims. We seek a better understanding of RCW120 and its local environment by analysing its dust temperature distribution. Additionally, we wish to understand how the dust emissivity index, beta, is related to the dust temperature. Methods. We determine dust temperatures in selected regions of the RCW 120 field by fitting their spectral energy distribution (SED), derived using aperture photometry. Additionally, we fit the SED extracted from a grid of positions to create a temperature map. Results. We find a gradient in dust temperature, ranging from >30 K in the interior of RCW 120, to ~20K for the material collected in the PDR, to ~10K toward local infrared dark clouds and cold filaments. Our results suggest that RCW 120 is in the process of destroying the PDR delineating its bubble morphology. The leaked radiation from its interior may influence the creation of the next generation of stars. We find support for an anti-correlation between the fitted temperature and beta, in rough agreement with what has been found previously. The extended wavelength coverage of the Herschel data greatly increases the reliability of this result.
We derive the molecular properties for a sample of 301 Galactic HII regions including 123 ultra compact (UC), 105 compact, and 73 diffuse nebulae. We analyze all sources within the BU-FCRAO Galactic Ring Survey (GRS) of 13CO emission known to be HII regions based upon the presence of radio continuum and cm-wavelength radio recombination line emission. Unlike all previous large area coverage 13CO surveys, the GRS is fully sampled in angle and yet covers ~75 square degrees of the Inner Galaxy. The angular resolution of the GRS 46 allows us to associate molecular gas with HII regions without ambiguity and to investigate the physical properties of this molecular gas. We find clear CO/HII morphological associations in position and velocity for ~80% of the nebular sample. Compact HII region molecular gas clouds are on average larger than UC clouds: 2.2 compared to 1.7. Compact and UC HII regions have very similar molecular properties, with ~5K line intensities and ~4 km/s line widths. The diffuse HII region molecular gas has lower line intensities, ~3K, and smaller line widths, ~3.5 km/s. These latter characteristics are similar to those found for quiescent molecular clouds in the GRS. Our sample nebulae thus show evidence for an evolutionary sequence wherein small, dense molecular gas clumps associated with UC HII regions grow into older compact nebulae and finally fragment and dissipate into large, diffuse nebulae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا