ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellite geodesy uses the measurement of the motion of one or more satellites to infer precise information about the Earths gravitational field. In this work, we consider the achievable precision limits on such measurements by examining the three ma in noise sources in the measurement process of the current Gravitational Recovery and Climate Experiment (GRACE) Follow-On mission: laser phase noise, accelerometer noise and quantum noise. We show that, through time-delay interferometry, it is possible to remove the laser phase noise from the measurement, allowing for up to three orders of magnitude improvement in the signal-to-noise ratio. Several differential mass satellite formations are presented which can further enhance the signal-to-noise ratio through the removal of accelerometer noise. Finally, techniques from quantum optics have been studied, and found to have great promise for reducing quantum noise in other alternative mission configurations. We model the spectral noise performance using an intuitive 1D model and verify that our proposals have the potential to greatly enhance the performance of near-future satellite geodesy missions.
Quantum illumination is the task of determining the presence of an object in a noisy environment. We determine the optimal continuous variable states for quantum illumination in the limit of zero object reflectivity. We prove that the optimal single mode state is a coherent state, while the optimal two mode state is the two-mode squeezed-vacuum state. We find that these probes are not optimal at non-zero reflectivity, but remain near optimal. This demonstrates the viability of the continuous variable platform for an experimentally accessible, near optimal quantum illumination implementation.
Finding the optimal attainable precisions in quantum multiparameter metrology is a non trivial problem. One approach to tackling this problem involves the computation of bounds which impose limits on how accurately we can estimate certain physical qu antities. One such bound is the Holevo Cramer Rao bound on the trace of the mean squared error matrix. The Holevo bound is an asymptotically achievable bound when one allows for any measurement strategy, including collective measurements on many copies of the probe. In this work we introduce a tighter bound for estimating multiple parameters simultaneously when performing separable measurements on finite copies of the probe. This makes it more relevant in terms of experimental accessibility. We show that this bound can be efficiently computed by casting it as a semidefinite program. We illustrate our bound with several examples of collective measurements on finite copies of the probe. These results have implications for the necessary requirements to saturate the Holevo bound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا