ترغب بنشر مسار تعليمي؟ اضغط هنا

The photofission cross-section of 238U was measured at sub-barrier energies as a function of the gamma-ray energy using, for the first time, a monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The experiment was performed at the H igh Intensity gamma-ray Source (HIgS) facility at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution. Indications of transmission resonances have been observed at gamma-ray beam energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1 nuclear reaction code calculations to the experimental photofission cross section.
The fission probability of 232Pa was measured as a function of the excitation energy in order to search for hyperdeformed (HD) transmission resonances using the (d,pf) transfer reaction on a radioactive 231Pa target. The experiment was performed at t he Tandem accelerator of the Maier-Leibnitz Laboratory (MLL) at Garching using the 231Pa(d,pf) reaction at a bombarding energy of E=12 MeV and with an energy resolution of dE=5.5 keV. Two groups of transmission resonances have been observed at excitation energies of E=5.7 and 5.9 MeV. The fine structure of the resonance group at E=5.7 MeV could be interpreted as overlapping rotational bands with a rotational parameter characteristic to a HD nuclear shape. The fission barrier parameters of 232Pa have been determined by fitting TALYS 1.2 nuclear reaction code calculations to the overall structure of the fission probability. From the average level spacing of the J=4 states, the excitation energy of the ground state of the 3rd minimum has been deduced to be E(III)=5.05 MeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا