ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper summarizes the Multiple Parton Interactions studies in CMS, focusing on the already performed low pT QCD measurements up to highest centre of mass energies of 7 TeV and discussing the plans for the direct measurement of the multiple high-p T scatterings. The underlying event in pp interactions is studied measuring the charged multiplicity density and the charged energy density in the transverse region, which is defined considering the azimuthal distance of the reconstructed tracks with respect to the leading track-jet of the event, defined from tracks according to a jet clustering algorithms. In addition, we present the measurement of the underlying event using the jet-area/median approach, demonstrating its sensitivity to different underlying event scenarios. Observations in the central region are complemented by the mea- surement of the energy flow in the forward direction for minimum bias and central di-jet events. We compare our underlying event and forward results with the predictions from different Monte Carlo event generators and tunes, aiming to best parametrize the multiple parton interaction energy de- pendence starting from the Monte Carlo tunes developed to best fit the charged particle spectra measured at central rapidities. Finally we discuss the strategy to directly measure the multiple particle interactions rate focusing on the topologies with two hard scatterings in the same event.
The objective of this first workshop on Multiple Partonic Interactions (MPI) at the LHC is to raise the profile of MPI studies, summarizing the legacy from the older phenomenology at hadronic colliders and favouring further specific contacts between the theory and experimental communities. The MPI are experiencing a growing popularity and are currently widely invoked to account for observations that would not be explained otherwise: the activity of the Underlying Event, the cross sections for multiple heavy flavour production, the survival probability of large rapidity gaps in hard diffraction, etc. At the same time, the implementation of the MPI effects in the Monte Carlo models is quickly proceeding through an increasing level of sophistication and complexity that in perspective achieves deep general implications for the LHC physics. The ultimate ambition of this workshop is to promote the MPI as unification concept between seemingly heterogeneous research lines and to profit of the complete experimental picture in order to constrain their implementation in the models, evaluating the spin offs on the LHC physics program.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا