ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate experimentally the spatial distributions of heavy and neutrally buoyant particles of finite size in a fully turbulent flow. As their Stokes number (i.e. ratio of the particle viscous relaxation time to a typical flow time scale) is clo se to 1, one may expect both classes of particles to aggregate in specific flow regions. This is not observed. Using a Voronoi analysis we show that neutrally buoyant particles sample turbulence homogeneously, whereas heavy particles do cluster. One implication for the understanding and modeling of particle laden flows, is that the Stokes number cannot be the sole key parameter as soon as the dynamics of finite-size objects is considered.
We investigate the preferential concentration of particles which are neutrally buoyant but with a diameter significantly larger than the dissipation scale of the carrier flow. Such particles are known not to behave as flow tracers (Qureshi et al., Ph ys. Re. Lett. 2007) but whether they do cluster or not remains an open question. For this purpose, we take advantage of a new turbulence generating apparatus, the Lagrangian Exploration Module which produces homogeneous and isotropic turbulence in a closed water flow. The flow is seeded with neutrally buoyant particles with diameter 700mum, corresponding to 4.4 to 17 times the turbulent dissipation scale when the rotation frequency of the impellers driving the flow goes from 2 Hz to 12 Hz, and spanning a range of Stokes numbers from 1.6 to 24.2. The spatial structuration of these inclusions is then investigated by a Voronoi tesselation analysis, as recently proposed by Monchaux et al. (Phys. Fluids 2010), from images of particle concentration field taken in a laser sheet at the center of the flow. No matter the rotating frequency and subsequently the Reynolds and Stokes numbers, the particles are found not to cluster. The Stokes number by itself is therefore shown to be an insufficient indicator of the clustering trend in particles laden flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا