ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove that the eigencurve associated to a definite quaternion algebra over $QQ$ satisfies the following properties, as conjectured by Coleman--Mazur and Buzzard--Kilford: (a) over the boundary annuli of weight space, the eigencurve is a disjoint u nion of (countably) infinitely many connected components each finite and flat over the weight annuli, (b) the $U_p$-slopes of points on each fixed connected component are proportional to the $p$-adic valuations of the parameter on weight space, and (c) the sequence of the slope ratios form a union of finitely many arithmetic progressions with the same common difference. In particular, as a point moves towards the boundary on an irreducible connected component of the eigencurve, the slope converges to zero.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_mathfrak{p}$ acting on $(mathrm{mod}, p^m)$ Katz Hilbert modular classes which agrees with the classical Hec ke operator at $mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of F. Calegari and D. Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight ${bf 1}$ are unramified at $p$ when $[F:mathbb Q]=2$. Some partial and some conjectural results are obtained when $[F:mathbb Q]>2$.
Let $F$ be a totally real field of degree $g$, and let $p$ be a prime number. We construct $g$ partial Hasse invariants on the characteristic $p$ fiber of the Pappas-Rapoport splitting model of the Hilbert modular variety for $F$ with level prime to $p$, extending the usual partial Hasse invariants defined over the Rapoport locus. In particular, when $p$ ramifies in $F$, we solve the problem of lack of partial Hasse invariants. Using the stratification induced by these generalized partial Hasse invariants on the splitting model, we prove in complete generality the existence of Galois pseudo-representations attached to Hecke eigenclasses of paritious weight occurring in the coherent cohomology of Hilbert modular varieties $mathrm{mod}$ $p^m$, extending a previous result of M. Emerton and the authors which required $p$ to be unramified in $F$.
We fix a monic polynomial $f(x) in mathbb F_q[x]$ over a finite field and consider the Artin-Schreier-Witt tower defined by $f(x)$; this is a tower of curves $cdots to C_m to C_{m-1} to cdots to C_0 =mathbb A^1$, with total Galois group $mathbb Z_p$. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain a result on the behavior of the slopes of the eigencurve associated to the Artin-Schreier-Witt tower, analogous to the result of Buzzard and Kilford.
145 - Yichao Tian , Liang Xiao 2013
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Cole man. The key ingredient of the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of the Hilbert modular variety. A byproduct of the proof is to show that, at least when $p$ is inert, of the rigid cohomology of the ordinary locus has the same image as the classical forms in the Grothendieck group of Hecke modules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا