ترغب بنشر مسار تعليمي؟ اضغط هنا

A new EAS Cherenkov light array, Tunka-133, with ~1 km^2 geometrical area has been installed at the Tunka Valley (50 km from Lake Baikal) in 2009. The array permits a detailed study of cosmic ray energy spectrum and mass composition in the energy ran ge 10^16 - 10^18 eV with a uniform method. We describe the array construction, DAQ and methods of the array calibration.The method of energy reconstruction and absolute calibration of measurements are discussed. The analysis of spatial and time structure of EAS Cherenkov light allows to estimate the depth of the EAS maximum X_max. The results on the all particles energy spectrum and the mean depth of the EAS maximum X_max vs. primary energy derived from the data of two winter seasons (2009 -- 2011), are presented. Preliminary results of joint operation of the Cherenkov array with antennas for detection of EAS radio signals are shown. Plans for future upgrades -- deployment of remote clusters, radioantennas and a scintillator detector network and a prototype of the HiSCORE gamma-telescope -- are discussed.
The new EAS Cherenkov array Tunka-133 with about 1 km**2 geometric acceptance area is installed in the Tunka Valley (50 km from Lake Baikal). The array willpermit a detailed study of cosmic ray energy spectrum and mass composition in the energy range of 10**15 - 10**18 eV with uniform method. The array consistsof 19 clusters, each composed of 7 optical detectors with 20 cm PMTs. Since November 2008, the first 12 clusters are in operation, commissioning of the whole array is planned for September 2009 (At the time of submission of this paperto electronic arXiv(February 2010) the completed Tunka-133 array is already taking data). We describe the array construction and DAQ, preliminary results and plans for the future development: deployment of radio-antennas and muon detectors network.
The new EAS Cherenkov array Tunka-133, with about 1 km**2 sensitive area, is being installed in the Tunka Valley since the end of 2005. This array will permit a detailed study of the cosmic ray energy spectrum and the mass composition in the energy r ange of 10**15-10**18 eV with a unique method. The array will consist of 19 clusters, each composed of 7 optical detectors. The first cluster started operation in October 2006. We describe the data acquisition system and present preliminary results from data taken with the first cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا