ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body correlations for the ground-state decay of the lightest two-proton emitter $^{6}$Be are studied both theoretically and experimentally. Theoretical studies are performed in a three-body hyperspherical-harmonics cluster model. In the experim ental studies, the ground state of $^{6}$Be was formed following the $alpha$ decay of a $^{10}$C beam inelastically excited through interactions with Be and C targets. Excellent agreement between theory and experiment is obtained demonstrating the existence of complicated correlation patterns which can elucidate the structure of $^{6}$Be and, possibly, of the A=6 isobar.
Proton-proton correlations were observed for the two-proton decays of the ground states of $^{19}$Mg and $^{16}$Ne. The trajectories of the respective decay products, $^{17}$Ne+p+p and $^{14}$O+p+p, were measured by using a tracking technique with mi crostrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the $sd$ shell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا