ترغب بنشر مسار تعليمي؟ اضغط هنا

A polarized $ep/eA$ collider (Electron--Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center--of--mass energy $sqrt{s} sim 20$ to $sim100$~GeV (upgradable to $sim 150$ GeV) and a lumi nosity up to $sim 10^{34} , textrm{cm}^{-2} textrm{s}^{-1}$, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three--dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini--review contains a short update on progress in these areas since the EIC White paper~cite{Accardi:2012qut}.
85 - H. Gao , L. Gamberg , J.-P. Chen 2010
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to perform precision studies of the transverse spin and transverse-momentum-dependent structure in the valence quark region for both the proton and the neutron. In this paper, w e focus our discussion on a recently approved experiment on the neutron as an example of the precision studies planned at JLab. The new experiment will perform precision measurements of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production of charged pions from a 40-cm long transversely polarized $^3$He target in Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This new coincidence experiment in Hall A will employ a newly proposed solenoid spectrometer (SoLID). The large acceptance spectrometer and the high polarized luminosity will provide precise 4-D ($x$, $z$, $P_T$ and $Q^2$) data on the Collins, Sivers, and pretzelocity asymmetries for the neutron through the azimuthal angular dependence. The full 2$pi$ azimuthal angular coverage in the lab is essential in controlling the systematic uncertainties. The results from this experiment, when combined with the proton Collins asymmetry measurement and the Collins fragmentation function determined from the e$^+$e$^-$ collision data, will allow for a quark flavor separation in order to achieve a determination of the tensor charge of the d quark to a 10% accuracy. The extracted Sivers and pretzelocity asymmetries will provide important information to understand the correlations between the quark orbital angular momentum and the nucleon spin and between the quark spin and nucleon spin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا