ترغب بنشر مسار تعليمي؟ اضغط هنا

The seasonal evolution of Saturns polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $mu$m thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60$^circ$ from northern winter/southern summer (2004, $L_s=293^circ$) through the equinox (2009, $L_s=0^circ$) to northern spring/southern autumn (2014, $L_s=56^circ$). The hot tropospheric polar cyclones and the hexagonal shape of the north polar belt are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by $approx30^circ$ longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75$^circ$S, coinciding with a depletion in the abundances of acetylene and ethane, and suggestive of stratospheric upwelling with vertical wind speeds of $wapprox+0.1$ mm/s. This is mirrored by a general warming of the northern polar stratosphere and an enhancement in acetylene and ethane abundances that appears to be most intense poleward of 75$^circ$N, suggesting subsidence at $wapprox-0.15$ mm/s. However, the sharp gradient in stratospheric emission expected to form near 75$^circ$N by northern summer solstice (2017, $L_s=90^circ$) has not yet been observed, so we continue to await the development of a northern summer stratospheric vortex. North polar minima in tropospheric and stratospheric temperatures were detected in 2008-2010 (lagging one season, or 6-8 years, behind winter solstice); south polar maxima appear to have occurred before the start of the Cassini observations (1-2 years after summer solstice). [Abridged]
Imaging and spectroscopy of Neptunes thermal infrared emission is used to assess seasonal changes in Neptunes zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Ou r aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $pm$5 K at 1 mbar and $pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا