ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - Laura Valore 2014
The Fluorescence Detector (FD) of the Pierre Auger Observatory provides a nearly calorimetric measurement of the primary particle energy, since the fluorescence light produced is proportional to the energy dissipated by an Extensive Air Shower (EAS) in the atmosphere. The atmosphere therefore acts as a giant calorimeter, whose properties need to be well known during data taking. Aerosols play a key role in this scenario, since their effect on light transmission is highly variable even on a time scale of one hour, and the corresponding correction to EAS energy can range from a few percent to more than 40%. For this reason, hourly Vertical Aerosol Optical Depth (taer(h)) profiles are provided for each of the four FD stations. Starting from 2004, up to now 9 years of taer(h) profiles have been produced using data from the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) of the Pierre Auger Observatory. The two laser facilities, the techniques developed to measure taer(h) profiles using laser data and the results will be discussed.
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measure ments of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا