ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit descriptions of local integral Galois module generators in certain extensions of $p$-adic fields due to Pickett have recently been used to make progress with open questions on integral Galois module structure in wildly ramified extensions of number fields. In parallel, Pulita has generalised the theory of Dworks power series to a set of power series with coefficients in Lubin-Tate extensions of $Q_p$ to establish a structure theorem for rank one solvable p-adic differential equations. In this paper we first generalise Pulitas power series using the theories of formal group exponentials and ramified Witt vectors. Using these results and Lubin-Tate theory, we then generalise Picketts constructions in order to give an analytic representation of integral normal basis generators for the square root of the inverse different in all abelian totally, weakly and wildly ramified extensions of a p-adic field. Other applications are also exposed.
If $L/K$ is a finite Galois extension of local fields, we say that the valuation criterion $VC(L/K)$ holds if there is an integer $d$ such that every element $x in L$ with valuation $d$ generates a normal basis for $L/K$. Answering a question of Byot t and Elder, we first prove that $VC(L/K)$ holds if and only if the tamely ramified part of the extension $L/K$ is trivial and every non-zero $K[G]$-submodule of $L$ contains a unit. Moreover, the integer $d$ can take one value modulo $[L:K]$ only, namely $-d_{L/K}-1$, where $d_{L/K}$ is the valuation of the different of $L/K$. When $K$ has positive characteristic, we thus recover a recent result of Elder and Thomas, proving that $VC(L/K)$ is valid for all extensions $L/K$ in this context. When $char{;K}=0$, we identify all abelian extensions $L/K$ for which $VC(L/K)$ is true, using algebraic arguments. These extensions are determined by the behaviour of their cyclic Kummer subextensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا