ترغب بنشر مسار تعليمي؟ اضغط هنا

The ground state of a two-dimensional ionic mixture composed of oppositely charged spheres is determined as a function of the size asymmetry by using a penalty method. The cascade of stable structures includes square, triangular and rhombic crystals as well as a dipolar pair gas and a gas of one-dimensional crystalline chains. Thereby we confirm the square structure, found experimentally on charged granulates, and predict new phases detectable in experiments on granular and colloidal matter.
An ultra-fast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling w hich is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored. Local crystallites with triangular and square symmetry are formed on different time scales and the correlation peak amplitude of the small particles evolves nonmonotonically in time in agreement with Brownian dynamics computer simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا