ترغب بنشر مسار تعليمي؟ اضغط هنا

The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going Hubble Space Telescope (HST) multi-cycle program that will image one-third of the M31 disk at high resolution, with wavelength coverage from the ultraviolet through the near-infrared. T his dataset will allow for the construction of the most complete catalog of stellar clusters obtained for a spiral galaxy. Here, we provide an overview of the PHAT survey, a progress report on the status of observations and analysis, and preliminary results from the PHAT cluster program. Although only ~20% of the survey is complete, the superior resolution of HST has allowed us to identify hundreds of new intermediate and low mass clusters. As a result, the size of the cluster sample within the Year 1 survey footprint has grown by a factor of three relative to previous catalogs.
Using an [OIII]5007 on-band/off-band filter technique, we identify 109 planetary nebulae (PNe) candidates in M 82, using the FOCAS instrument at the 8.2m Subaru Telescope. The use of ancillary high-resolution HST ACS H-alpha imaging aided in discrimi nating PNe from contaminants such as supernova remnants and compact HII regions. Once identified, these PNe reveal a great deal about the host galaxy; our analysis covers kinematics, stellar distribution, and distance determination. Radial velocities were determined for 94 of these PNe using a method of slitless spectroscopy, from which we obtain a clear picture of the galaxys rotation. Overall, our results agree with those derived by CO(2-1) and HI measurements that show a falling, near-Keplerian rotation curve. However, we find a subset of our PNe that appear to lie far above the plane (~1 kpc), yet these objects appear to be rotating as fast as objects close to the plane. These objects will require further study to determine if they are members of a halo population, or if they can be interpreted as a manifestation of a thickened disk as a consequence of a past interaction with M 81. In addition, [OIII]5007 emission line photometry of the PNe allows the construction of a planetary nebula luminosity function (PNLF). Our PNLF distance determination for M 82 yields a larger distance than those derived using the TRGB, using Cepheid variable stars in nearby group member M 81, or using the PNLF of M 81. We show that this inconsistency most likely stems from our inability to completely correct for internal extinction imparted by this dusty, starburst galaxy. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا