ترغب بنشر مسار تعليمي؟ اضغط هنا

Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well-captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. N umerical studies which include radiative cooling typically adopt the 100--200 cells per clump radius resolution. In this paper we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1,536 cells per clump radius, employing adaptive mesh refinement (AMR) in a 2D axisymmetric geometry (2.5D). We also provide a fully 3D simulation, at 192 cells per clump radius, which supports our 2.5D results. We find no appreciable self-convergence at ~100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient resolution, such as the demonstration of adequate resolution of the cooling layers behind shocks. We discuss an associated refinement criteria for AMR codes.
Herbig-Haro (HH) jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or ``pulsed variations of conditions at the jet source. Simulations based on t his scenario result in knots extending across the jet diameter. Observations and recent high energy density laboratory experiments shed new light on structures below this scale and indicate they may be important for understanding the fundamentals of jet dynamics. In this paper we offer an alternative to ``pulsed models of protostellar jets. Using direct numerical simulations we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our models explore an idealization of this scenario by injecting small ($r<r_{jet}$), dense ($rho>rho_{jet}$) spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by $sim15$%. We find the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the inter-clump medium in a variety of ways. Structures which mimic what is expected from pulsed-jet models can form, as can previously unseen ``sub-radial behaviors including backward facing bow shocks and off-axis working surfaces. While these small-scale structures have not been seen before in simulation studies, they are found in high resolution jet observations. We discuss implications of our simulations for the interpretation of protostellar jets with regard to characterization of knots by a ``lifetime or ``velocity history approach as well as linking observed structures with central engines which produce the jets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا