ترغب بنشر مسار تعليمي؟ اضغط هنا

167 - K. Muzic , R. Schoedel , A. Eckart 2008
Context: The Galactic Center IRS 13E cluster is located ~3.2 from SgrA*. It is an extremely dense stellar association containing several Wolf-Rayet and O-type stars, at least four of which show a common velocity. Only half an arcsecond north from IRS 13E there is a complex of extremely red sources, so-called IRS 13N. Their nature is still unclear. Based on the analysis of their colors, there are two main possibilities: (1) dust embedded sources older than few Myr, or (2) extremely young objects with ages less than 1Myr. Aims: We present the first proper motion measurements of IRS 13N members, and additionally give proper motions of four of IRS 13E stars resolved in the L-band. Methods: The L-band (3.8 micron) observations have been carried out using the NACO adaptive optics system at the ESO VLT. Proper motions have been obtained by linear fitting of the stellar positions extracted by StarFinder as a function of time, weighted by positional uncertainties. Results: We show that six of seven resolved northern sources show a common proper motion, thus revealing a new comoving group of stars in the central half parsec of the Milky Way. The common proper motions of IRS 13E and IRS 13N clusters are significantly (>5sigma) different. We also performed a fitting of the positional data for those stars onto Keplerian orbits, assuming SgrA* as the center of the orbit. Our results favor the very young stars hypothesis.
Context: L-band (3.8 micron) images of the Galactic Center show a large number of thin filaments in the mini-spiral, located west of the mini-cavity and along the inner edge of the Northern Arm. One possible mechanism that could produce such structur es is the interaction of a central wind with the mini-spiral. Additionally, we identify similar features that appear to be associated with stars. Aims: We present the first proper motion measurements of the thin dust filaments observed in the central parsec around SgrA* and investigate possible mechanisms that could be responsible for the observed motions. Methods: The observations have been carried out using the NACO adaptive optics system at the ESO VLT. The images have been transformed to a common coordinate system and features of interest were extracted. Then a cross-correlation technique could be performed in order to determine the offsets between the features with respect to their position in the reference epoch. Results: We derive the proper motions of a number of filaments and 2 cometary shaped dusty sources close (in projection) to SgrA*. We show that the shape and the motion of the filaments does not agree with a purely Keplerian motion of the gas in the potential of the supermassive black hole at the position of SgrA*. Therefore, additional mechanisms must be responsible for their formation and motion. We argue that the properties of the filaments are probably related to an outflow from the disk of young mass-losing stars around SgrA*. In part, the outflow may originate from the black hole itself. We also present some evidence and theoretical considerations that the outflow may be collimated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا