ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study the non-bipartite maximum matching problem in the semi-streaming model. The maximum matching problem in the semi-streaming model has received a significant amount of attention lately. While the problem has been somewhat well s olved for bipartite graphs, the known algorithms for non-bipartite graphs use $2^{frac1epsilon}$ passes or $n^{frac1epsilon}$ time to compute a $(1-epsilon)$ approximation. In this paper we provide the first FPTAS (polynomial in $n,frac1epsilon$) for the problem which is efficient in both the running time and the number of passes. We also show that we can estimate the size of the matching in $O(frac1epsilon)$ passes using slightly superlinear space. To achieve both results, we use the structural properties of the matching polytope such as the laminarity of the tight sets and total dual integrality. The algorithms are iterative, and are based on the fractional packing and covering framework. However the formulations herein require exponentially many variables or constraints. We use laminarity, metric embeddings and graph sparsification to reduce the space required by the algorithms in between and across the iterations. This is the first use of these ideas in the semi-streaming model to solve a combinatorial optimization problem.
In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has incre ased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا