ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide a detailed examination of a thermal out-of-time-order correlator (OTOC) growing exponentially in time in systems without chaos. The system is a one-dimensional quantum mechanics with a potential whose part is an inverted harmonic oscillato r. We numerically observe the exponential growth of the OTOC when the temperature is higher than a certain threshold. The Lyapunov exponent is found to be of the order of the classical Lyapunov exponent generated at the hilltop, and it remains non-vanishing even at high temperature. We adopt various shape of the potential and find these features universal. The study confirms that the exponential growth of the thermal OTOC does not necessarily mean chaos when the potential includes a local maximum. We also provide a bound for the Lyapunov exponent of the thermal OTOC in generic quantum mechanics in one dimension, which is of the same form as the chaos bound obtained by Maldacena, Shenker and Stanford.
We apply the relation between deep learning (DL) and the AdS/CFT correspondence to a holographic model of QCD. Using a lattice QCD data of the chiral condensate at a finite temperature as our training data, the deep learning procedure holographically determines an emergent bulk metric as neural network weights. The emergent bulk metric is found to have both a black hole horizon and a finite-height IR wall, so shares both the confining and deconfining phases, signaling the cross-over thermal phase transition of QCD. In fact, a quark antiquark potential holographically calculated by the emergent bulk metric turns out to possess both the linear confining part and the Debye screening part, as is often observed in lattice QCD. From this we argue the discrepancy between the chiral symmetry breaking and the quark confinement in the holographic QCD. The DL method is shown to provide a novel data-driven holographic modeling of QCD, and sheds light on the mechanism of emergence of the bulk geometries in the AdS/CFT correspondence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا