ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Koji Fujiwara 2013
We prove asymptotically isometric, coarsely geodesic metrics on a toral relatively hyperbolic group are coarsely equal. The theorem applies to all lattices in SO(n,1). This partly verifies a conjecture by Margulis. In the case of hyperbolic groups/sp aces, our result generalizes a theorem by Furman and a theorem by Krat. We discuss an application to the isospectral problem for the length spectrum of Riemannian manifolds. The positive answer to this problem has been known for several cases. All of them have hyperbolic fundamental groups. We do not solve the isospectral problem in the original sense, but prove the universal covers are (1,C)-quasi-isometric if the fundamental group is a toral relatively hyperbolic group.
Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ ha s positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
We show that for acylindrically hyperbolic groups $Gamma$ (with no nontrivial finite normal subgroups) and arbitrary unitary representation $rho$ of $Gamma$ in a (nonzero) uniformly convex Banach space the vector space $H^2_b(Gamma;rho)$ is infinite dimensional. The result was known for the regular representations on $ell^p(Gamma)$ with $1<p<infty$ by a different argument. But our result is new even for a non-abelian free group in this great generality for representations, and also the case for acylindrically hyperbolic groups follows as an application.
236 - Koji Fujiwara 2009
Let $S$ be a compact orientable surface, and $Mod(S)$ its mapping class group. Then there exists a constant $M(S)$, which depends on $S$, with the following property. Suppose $a,b in Mod(S)$ are independent (i.e., $[a^n,b^m] ot=1$ for any $n,m ot= 0$) pseudo-Anosov elements. Then for any $n,m ge M$, the subgroup $<a^n,b^m>$ is free of rank two, and convex-cocompact in the sense of Farb-Mosher. In particular all non-trivial elements in $<a^n,b^m>$ are pseudo-Anosov. We also show that there exists a constant $N$, which depends on $a,b$, such that $<a^n,b^m>$ is free of rank two and convex-cocompact if $|n|+|m| ge N$ and $nm ot=0$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا