ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $h^infty_v(mathbf D)$ and $h^infty_v(mathbf B)$ be the spaces of harmonic functions in the unit disk and multi-dimensional unit ball which admit a two-sided radial majorant $v(r)$. We consider functions $v $ that fulfill a doubling condition. In the two-dimensional case let $u (re^{ita},xi) = sum_{j=0}^infty (a_{j0} xi_{j0} r^j cos jtheta +a_{j1} xi_{j1} r^j sin jtheta)$ where $xi ={xi_{ji}}%_{k=0}^infty $ is a sequence of random subnormal variables and $a_{ji}$ are real; in higher dimensions we consider series of spherical harmonics. We will obtain conditions on the coefficients $a_{ji} $ which imply that $u$ is in $h^infty_v(mathbf B)$ almost surely. Our estimate improves previous results by Bennett, Stegenga and Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied to Bloch-type spaces, and we obtain a similar characterization for these spaces, which generalizes results by Anderson, Clunie and Pommerenke and by Guo and Liu.
Let $h^infty_v$ be the class of harmonic functions in the unit disk which admit a two-sided radial majorant $v(r)$. We consider functions $v $ that fulfill a doubling condition. We characterize functions in $h^infty_v$ that are represented by Hadamar d gap series in terms of their coefficients, and as a corollary we obtain a characterization of Hadamard gap series in Bloch-type spaces for weights with a doubling property. We show that if $uin h^infty_v$ is represented by a Hadamard gap series, then $u $ will grow slower than $v$ or oscillate along almost all radii. We use the law of the iterated logarithm for trigonometric series to find an upper bound on the growth of a weighted average of the function $u $, and we show that the estimate is sharp.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا