ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the orbital dynamics of hierarchical three-body systems containing a double neutron star system orbiting around a massive black hole. These systems show complex dynamical behaviour because of relativistic coupling between orbits of the neutron stars in the double neutron star system and the orbit of the double neutron star system around the black hole. The orbital motion of the neutron stars around each other drives a loop mass current, which gives rise to gravito-magnetism. Generally, gravito-magnetism involves a rotating black hole. The hierarchical three-body system that we consider is an unusual situation in which black hole rotation is not required. Using a gravito-electromagnetic formulation, we calculate the orbital precession and nutation of the double neutron star system. These precession and nutation effects are observable, thus providing probes to the spacetime around black holes as well as tests of gravito-electromagnetism in the framework of general relativity.
We investigate the polarization of Compton scattered X-rays from relativistic jets in active galactic nuclei using Monte Carlo simulations. We consider three scenarios: scattering of photons from an accretion disk, scattering of cosmic microwave back ground (CMB) photons, and synchrotron self-Comptonization (SSC) within the jet. For Comptonization of thermal disk photons or CMB photons the maximum linear polarization attained is slightly over 20% at viewing angles close to 90 degrees. The value decreases with the viewing inclination. For SSC, the maximum value may exceed 80%. The angle dependence is complicated, and it varies with the photon injection sites. Our study demonstrates that X-ray polarization, in addition to multi-wavelength spectra, can distinguish certain models for emission and particle acceleration in relativistic jets.
54 - Kinwah Wu 2009
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Mo dels and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g ravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
We present a convariant formulation for radiative transfer in curved space time and demonstrate some applications in the black-hole systems. We calculate the emission from semi-transparent accretion tori around black holes, for opacity provided by th e Fe K lines and for opacity dominated by electron scattering. We also calculate the emission from radiative inefficient accretion flow in black holes with opacity provided by electron-positron annihilation lines. Finally we show shadows cast by accreting black holes with different spins and with different distribution of warm material around them.
46 - Kinwah Wu 2008
We investigate the structure of dynamics of large self-gravitating astrophysical systems using a self-interacting two-component model. We consider two cases, galaxy clusters and cosmic walls, for illustrations. In both cases stability analyses are co nducted using perturbative expansion. We have found that waves and solitons are easily generated in these systems. Our analysis shows that dark matter can be Jeans unstable in the very inner regions of galaxy clusters if it has a large internal degree of freedom. The dark matter core may collapse under external perturbations. We also discuss dark-matter oscillations in galaxy clusters and how mode growth and decay lead to heating of intracluster medium. Our analysis shows that dark-matter solitons with both positive and negative amplitudes can be excited in cosmic walls. Resonances in soliton interaction could enhance gas condensation. The co-existence of the two types of dark-matter solitons implies that bright filaments can arise in dark voids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا