ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a novel system for the simulation of quantum phase transitions of collective internal qubit and phononic states with a linear crystal of trapped ions. The laser-ion interaction creates an energy gap in the excitation spectrum, which induce s an effective phonon-phonon repulsion and a Jaynes-Cummings-Hubbard interaction. This system shows features equivalent to phase transitions of polaritons in coupled cavity arrays. Trapped ions allow for easy tunabilty of the hopping frequency by adjusting the axial trapping frequency, and the phonon-phonon repulsion via the laser detuning and intensity. We propose an experimental protocol to access all observables of the system, which allows one to obtain signatures of the quantum phase transitions even with a small number of ions.
We demonstrate the implementation of a spin qubit with a single Ca ion in a micro ion trap. The qubit is encoded in the Zeeman ground state levels mJ=+1/2 and mJ=-1/2 of the S1/2 state of the ion. We show sideband cooling close to the vibrational gro und state and demonstrate the initialization and readout of the qubit levels with 99.5% efficiency. We employ a Raman transition close to the S1/2 - P1/2 resonance for coherent manipulation of the qubit. We observe single qubit rotations with 96% fidelity and gate times below 5mus. Rabi oscillations on the blue motional sideband are used to extract the phonon number distribution. The dynamics of this distribution is analyzed to deduce the trap-induced heating rate of 0.3(1) phonons/ms.
The major challenges to fabricate quantum processors and future nano solid state devices are material modification techniques with nanometre resolution and suppression of statistical fluctuations of dopants or qubit carriers. Based on a segmented ion trap with mK laser cooled ions we have realized a deterministic single ion source which could operate with a huge range of sympathetically cooled ion species, isotopes or ionic molecules. We have deterministically extracted a predetermined number of ions on demand and have measured a longitudinal velocity uncertainty of 6.3m/s and a spatial beam divergence of 0.6 mrad. We show in numerical simulations that if the ions are cooled to the motional ground state (Heisenberg limit) nanometre spatial resolution can be achieved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا