ترغب بنشر مسار تعليمي؟ اضغط هنا

Whitneys extension problem asks the following: Given a compact set $Esubsetmathbb{R}^n$ and a function $f:Eto mathbb{R}$, how can we tell whether there exists $Fin C^m(mathbb{R}^n)$ such that $F|_E=f$? A 2006 theorem of Charles Fefferman answers this question in its full generality. In this paper, we establish a version of this theorem adapted for variants of the Whitney extension problem, including nonnegative extensions and the smooth selection problems. Among other things, we generalize the results of Fefferman-Israel-Luli (2016) to the setting of infinite sets.
98 - Kevin ONeill 2019
Although convolution on Euclidean space and the Heisenberg group satisfy the same $L^p$ bounds with the same optimal constants, the former has maximizers while the latter does not. However, as work of Christ has shown, it is still possible to charact erize near-maximizers. Specifically, any near-maximizing triple of the trilinear form for convolution on the Heisenberg group must be close to a particular type of triple of ordered Gaussians after adjusting by symmetry. In this paper, we use the expansion method to prove a quantitative version of this characterization.
In this paper, we prove $L^p$ decay estimates for multilinear oscillatory integrals in $mathbb{R}^2$, establishing sharpness through a scaling argument. The result in this paper is a generalization of the previous work by Gressman and Xiao (2016).
In this paper, we prove an $L^2-L^2-L^2$ decay estimate for a trilinear oscillatory integral of convolution type in $mathbb{R}^d,$ which recovers the earlier result of Li (2013) when $d=1.$ We discuss the sharpness of our result in the $d=2$ case. Ou r main hypothesis has close connections to the property of simple nondegeneracy studied by Christ, Li, Tao and Thiele (2005).
59 - Kevin ONeill 2018
One may define a trilinear convolution form on the sphere involving two functions on the sphere and a monotonic function on the interval $[-1,1]$. A symmetrization inequality of Baernstein and Taylor states that this form is maximized when the two fu nctions on the sphere are replaced with their nondecreasing symmetric rearrangements. In the case of indicator functions, we show that under natural hypotheses, the symmetric rearrangements are the only maximizers up to symmetry by establishing a sharpened inequality.
107 - Kevin ONeill 2018
Consider the trilinear form for twisted convolution on $mathbb{R}^{2d}$: begin{equation*} mathcal{T}_t(mathbf{f}):=iint f_1(x)f_2(y)f_3(x+y)e^{itsigma(x,y)}dxdy,end{equation*} where $sigma$ is a symplectic form and $t$ is a real-valued parameter. I t is known that in the case $t eq0$ the optimal constant for twisted convolution is the same as that for convolution, though no extremizers exist. Expanding about the manifold of triples of maximizers and $t=0$ we prove a sharpened inequality for twisted convolution with an arbitrary antisymmetric form in place of $sigma$.
A symmetrization inequality of Rogers and of Brascamp-Lieb-Luttinger states that for a certain class of multilinear integral expressions, among tuples of sets of prescribed Lebesgue measures, tuples of balls centered at the origin are among the maxim izers. Under natural hypotheses, we characterize all maximizing tuples for these inequalities for dimensions strictly greater than 1. We establish a sharpened form of the inequality.
110 - Kevin ONeill 2017
The Holder-Brascamp-Lieb inequalities are a collection of multilinear inequalities generalizing a convolution inequality of Young and the Loomis-Whitney inequalities. The full range of exponents was classified in Bennett et al. (2008). In a setting s imilar to that of Ivanisvili and Volberg (2015), we introduce a notion of size for these inequalities which generalizes $L^p$ norms. Under this new setup, we then determine necessary and sufficient conditions for a generalized Holder-Brascamp-Lieb type inequality to hold and establish sufficient conditions for extremizers to exist when the underlying linear maps match those of the convolution inequality of Young.
We present results on electromigrated Au nanojunctions broken near the conductance quantum $77.5 mu$S. At room temperature we find that wires, initially narrowed by an actively-controlled electromigration technique down to a few conductance quanta, c ontinue to narrow after removing the applied voltage. Separate electrodes form as mobile gold atoms continuously reconfigure the constriction. We find, from results obtained on over 300 samples, no evidence for gold cluster formation in junctions broken without an applied voltage, implying that gold clusters may be avoided by using this self-breaking technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا