ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold neutrons (UCNs) were produced in a 4 liter volume of superfluid helium using the PF1B cold neutron beam facility at the Institut Laue-Langevin and then extracted to a detector at room temperature. With a converter temperature of 1.08 K the number of accumulated UCNs was counted to be $91,!700 pm 300$. From this, we derive a volumetric UCN production rate of $(6.9 pm 1.7),mathrm{cm^{-3},s^{-1}}$, which includes a correction for losses in the converter during UCN extraction caused by a short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs due to excitations in the superfluid was studied by scanning the temperature between 1.2-2.4 K. Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data in the analysis, the only UCN up-scattering process found to be present was from two-phonon scattering. Our analysis rules out contributions from the other scattering processes to $lesssim 10%$ of their predicted levels.
62 - K. Leung , S. Ivanov , F. Martin 2015
This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field soleno id. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements.
The current knowledge of the neutron $beta$-decay lifetime has come under scrutiny as of late due to large disagreements between recent precise measurements. Measurements using magnetically trapped Ultra-Cold Neutrons (UCNs) offer the possibility of storage without spurious losses which can provide a reliable value for the neutron lifetime. The progress towards realizing a neutron lifetime measurement using a Ioffe-type trap made with a Halbach-type permanent octupole magnet is presented here. The experimental procedure extracts a gas of UCNs into vacuum, which reduces many known channels of neutron losses, and detects the neutron decays via in-situ detection of the produced protons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا