ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed noise measurements in a two-dimensional electron gas to investigate the nonequilibrium quantum Hall effect (QHE) state. While excess noise is perfectly suppressed around the zero-biased QHE state reflecting the dissipationless electron t ransport of the QHE state, considerable finite excess noise is observed in the breakdown regime of the QHE. The noise temperature deduced from the excess noise is found to be of the same order as the energy gap between the highest occupied Landau level and the lowest empty one. Moreover, unexpected finite excess noise is observed at a finite source-drain bias voltagesmaller than the onset voltage of the QHE breakdown, which indicates finite dissipation in the QHE state and may be related to the prebreakdown of the QHE.
We study the shot noise (nonequilibrium current fluctuation) associated with dynamic nuclear polarization in a nonequilibrium quantum wire (QW) fabricated in a two-dimensional electron gas. We observe that the spin-polarized conductance quantization of the QW in the integer quantum Hall regime collapses when the QW is voltage biased to be driven to nonequilibrium. By measuring the shot noise, we prove that the spin polarization of electrons in the QW is reduced to $sim 0.7$ instead of unity as a result of electron-nuclear spin-flip scattering. The result is supported by Knight shift measurements of the QW using resistively detected NMR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا