ترغب بنشر مسار تعليمي؟ اضغط هنا

We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 * 10^-18 eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.
Direct LHC bounds on colored SUSY particles now corner naturalness more than the measured value of the Higgs mass does. Bounds on the gluino are of particular importance, since it radiatively sucks up the stop and Higgs-up soft masses. As a result, e ven models that easily accommodate a 125 GeV Higgs are almost as tuned as the simplest version of SUSY, the MSSM: at best at the percent level. In this paper, we further examine how current LHC results constrain naturalness in three classes of models that may relax LHC bounds on sparticles: split families, baryonic RPV, and Dirac gauginos. In models of split families and bRPV, the bounds on the gluino are only slightly reduced, resulting in a few percent tuning. In particular, having a natural spectrum in bRPV models typically implies that tops, Ws, and Zs are easily produced in the cascade decays of squarks and gluinos. The resulting leptons and missing energy push the gluino mass limit above 1 TeV. Even when the gluino has a Dirac mass and does not contribute to the stop mass at one loop, tuning reappears in calculable models because there is no symmetry imposing the supersoft limit. We conclude that, even if sparticles are found at LHC-14, naturalness will not emerge triumphant.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا