ترغب بنشر مسار تعليمي؟ اضغط هنا

The WHOT-QCD Collaboration is pushing forward a series of lattice studies of QCD at finite temperatures and densities using improved Wilson quarks. Because Wilson-type quarks require more computational resources than the more widely adopted staggered -type quarks, various theoretical and computational techniques have to be developed and applied. In this paper, we introduce the fixed-scale approach armed with the T-integration method, the Gaussian method based on the cumulant expansion, and the histogram method combined with the reweighting technique. Adopting these methods, we have carried out the first study of finite-density QCD with Wilson-type quarks and the first calculation of the equation of state with 2+1 flavors of Wilson-type quarks. We present results of these studies and discuss perspectives towards a clarification of the properties of 2+1 flavor QCD at the physical point, at finite temperatures and densities.
153 - Kazuyuki Kanaya 2010
In the last couple of years, there has been big progress in finite temperature QCD on the lattice. Large-scale dynamical simulations of 2+1 flavor QCD with various improved staggered quark actions have been started to produce results for various ther modynamic quantities which are extrapolated to the continuum limit at around physical quark masses, and thus are capable for a direct comparison with experiment. At the same time, the theoretical uneasiness with staggered-type lattice quarks motivated several groups to accelerate studies with Wilson-type quarks and lattice chiral quarks. In this review, I discuss these important developments in finite temperature QCD made in the past year.
74 - K. Kanaya , S. Aoki , S. Ejiri 2010
The WHOT-QCD Collaboration is pushing forward lattice studies of QCD at finite temperatures and densities using improved Wilson quarks. We first present results on QCD at zero and finite densities with two flavors of degenerate quarks (N_F=2 QCD) ado pting the conventional fixed-Nt approach. We then report on the status of a study of N_F=2+1 QCD adopting a fixed-scale approach armed with the T-integration method which we have developed.
75 - K. Kanaya , S. Aoki , H. Ohno 2009
We report on the status of our study towards the equation of state in 2+1 flavor QCD with improved Wilson quarks. To reduce the computational cost which is quite demanding for Wilson-type quarks, we adopt the fixed scale approach, i.e. the temperatur e T is varied by N_t at fixed lattice spacing. Since the conventional integral method to obtain the pressure is inapplicable at a fixed scale, we adopt the T-integral method, to calculate the pressure non-perturbatively. Reduction of the computational cost of T=0 simulations thus achieved is indispensable to study EOS in QCD with dynamical quarks.
135 - S. Aoki , S. Ejiri , T. Hatsuda 2008
We study the equation of state in two-flavor QCD at finite temperature and density. Simulations are made with the RG-improved gluon action and the clover-improved Wilson quark action. Along the lines of constant physics for $m_{rm PS}/m_{rm V} = 0.65 $ and 0.80, we compute the derivatives of the quark determinant with respect to the quark chemical potential $mu_q$ up to the fourth order at $mu_q=0$. We adopt several improvement techniques in the evaluation. We study thermodynamic quantities and quark number susceptibilities at finite $mu_q$ using these derivatives. We find enhancement of the quark number susceptibility at finite $mu_q$, in accordance with previous observations using staggered-type quarks. This suggests the existence of a nearby critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا