ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the preliminary results of a frequency and line-profile analysis of the CoRoT gamma Dor candidate HD171834. The data consist of 149 days of CoRoT light curves and a ground-based dataset of more than 1400 high-resolution spectra, obtained w ith six different instruments. Low-amplitude frequencies between 0 and 5 c/d, dominated by a frequency near 0.96 c/d and several of its harmonics, are detected. These findings suggest that HD171834 is not a mere gamma Dor pulsator and that stellar activity plays an important role in its variable behaviour. Based on CoRoT space data and on ground-based observations with ESO Telescopes at the La Silla Observatory under the ESO Large Programmes ESO LP 178.D-0361 and ESO LP 182.D-0356 (FEROS/2.2m and HARPS/3.6m), and data collected with FOCES/2.2m at the Centro Astronomico Hispano Aleman at Calar Alto, SOPHIE/1.93m at Observatoire de Haute Provence, FIES/NOT at Observatorio del Roque de los Muchachos, and HERCULES/1.0m at Mount John University Observatory.
SONG (Stellar Observations Network Group) is a global network of 1-m class robotic telescopes that is under development. The SONG prototype will shortly be operational at Observatorio del Teide, Tenerife, and first light is expected by December 2011. The main scientific goals of the SONG project are asteroseismology of bright stars and follow-up and characterization of exo-planets by means of precise measurements of stellar surface motions and brightness variations. We present the Tenerife SONG node and its instruments.
The Kepler spacecraft is providing photometric time series with micro-magnitude precision for thousands of variable stars. The continuous time-series of unprecedented time span open up opportunities to study the pulsational variability in much more d etail than was previously possible from the ground. We present a first general characterization of the variability of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and investigate the relation between gamma Doradus, delta Scuti, and hybrid stars. Our results imply an investigation of pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations and suggest a revision of the current observational instability strips of delta Scuti and gamma Doradus stars if the currently available values of effective temperature and surface gravity will be confirmed.
The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler ligh t curves of a sample of 750 candidate A-F type stars. We propose three main groups to describe the observed variety in pulsating A-F type stars: gamma Dor, delta Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much larger fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the gamma Dor and delta Sct range, also between 5 and 10 c/d, which is a challenge for the current models. We find indications for the existence of delta Sct and gamma Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the delta Sct and gamma Dor instability strips, and beyond. Non-variable stars seem to exist within the instability strips. The location of gamma Dor and delta Sct classes in the (Teff,logg)-diagram has been extended. We investigate two newly constructed variables efficiency and energy as a means to explore the relation between gamma Dor and delta Sct stars. Our results suggest a revision of the current observational instability strips, and imply an investigation of other pulsation mechanisms to supplement the kappa mechanism and convective blocking effect to drive hybrid pulsations.
The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for aste roseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based f ollow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present different aspects of the ground-based observational counterpart of the CoRoT satellite mission. We give an overview of the selected asteroseismic targets, the numerous instruments and observatories involved, and the first scientific results.
481 - K. Uytterhoeven 2008
To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectrosc opic and multi-colour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the delta Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92 c/d). Based on more than 600 multi-colour photometric datapoints of the beta Cep star HD180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD 44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the different filters.
Ground-based observations are a strong tool for asteroseismic studies and even in the era of asteroseismic space missions they continue to play an important role. I will report on the activities of the CoRoT/SWG Ground-Based Observations Working Grou p, discuss the observational efforts of the Open Cluster campaigns and the search for the origin of extra line-broadening in massive OB stars
Context: We present the results of an extensive ground-based photometric and spectroscopic campaign on the gamma Dor CoRoT target HD49434. This campaign was preparatory to the CoRoT satellite observations, which took place from October 2007 to March 2008. Results: The frequency analysis clearly shows the presence of four frequencies in the 0.2-1.7 c/d interval, as well as six frequencies in the 5-12 c/d domain. The low frequencies are typical for gamma Dor variables while the high frequencies are common for delta Sct pulsators. We propose the frequency 2.666 c/d as a possible rotational frequency. All modes, for which an identification was possible, seem to be high-degree modes (3 <= l <= 8). We did not find evidence for a possible binary nature of HD49434. The element abundances we derived are consistent with the values obtained in previous analyses. Conclusions: We classify the gamma Dor star HD49434 as a hybrid pulsator, which pulsates simultaneously in p- and g-modes. This finding makes HD49434 an extremely interesting target for asteroseismic modelling. Observations: Based on observations made with the 2.2m ESO/MPI telescope at the La Silla Observatory under the ESO Large Programme: LP178.D-0361. Also based on observations obtained at Observatorio de Sierra Nevada (Spain), at the Centro Astronomico Hispano Aleman at Calar Alto (Spain), at Observatorio Astronomico Nacional San Pedro Martir (Mexico), at the Piszkesteto Mountain Station of Konkoly Observatory (Hungary), at Observatoire de Haute Provence (France) and at Mount John University Observatory (New Zealand).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا