ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a program of K- and Ks-band imaging of a sample of 2Jy radio galaxies with redshifts 0.03 < z < 0.5, for which the host galaxy morphologies and structural parameters (effective radius, Sersic index and unresolved nuclear poi nt source contribution) have been determined using GALFIT. Two-thirds of our sample are best modelled as being hosted by massive elliptical galaxies with Sersic indices of n=4-6, with the remainder being better suited either by a mixture of morphological components (usually a bulge plus a small, less luminous, disk component) or by more disky galaxy models with n=1-2. Our measured galaxy sizes are generally in very good agreement with other imaging programs, both space- and ground-based. We also determine a slightly higher average nuclear point source contribution than similar HST-based programs. This is due to our inability to separate the AGN emission from compact circum-nuclear stellar emission, but does not bias our modelling of the remainder of the host galaxies and our results remain robust. We also observe that roughly half of the objects in our sample are either undergoing major or minor merger activity or are clearly morphologically disturbed.
We present the results of a multiwavelength study of the z = 0.31 radio source PKS2250-41. Integral field unit and long-slit spectroscopy obtained using VIMOS and FORS1 on the VLT, and archival HST optical imaging observations are used to study the m orphology, kinematics and ionisation state of the extended emission line region (EELR) surrounding this source, and also a companion galaxy at a similar redshift. Near-infrared imaging observations obtained using the NTT are used to analyse the underlying galaxy morphologies. The EELR displays a complex variety of different gas kinematics and ionization states, consistent with a mixture of radio source shocks and AGN photoionization. The radio galaxy is likely to lie within a group environment, and is plausibly undergoing interactions with one or more other objects. The disk-like galaxy to the northeast of the radio source lies at a similar redshift to the radio galaxy itself, and has its major axis position angle aligned with the filamentary continuum and line emission extending outwards from the radio galaxy. This filamentary structure is most plausibly interpreted as a tidal structure associated with an interaction involving the radio source host galaxy and the aligned companion galaxy to the north-east; this encounter may have potentially triggered the current epoch of radio source activity. Overall, PKS2250-41 displays some of the best evidence that radio source activity can be triggered in this manner. [abridged]
We present the results of a multiwavelength study of the z=0.23 radio source PKS1932-46. VIMOS IFU spectroscopy is used to study the morphology, kinematics and ionisation state of the EELR surrounding this source, and also a companion galaxy at a sim ilar redshift. Near- and far-IR imaging observations obtained using the NTT and SPITZER are used to analyse the underlying galaxy morphologies and the nature of the AGN. The host galaxy is identified as an ~M* elliptical. Combining Spitzer mid-IR with X-ray, optical and near-IR imaging observations of this source, we conclude that its AGN is underluminous for a radio source of this type, despite its status as a BLRG. However, given its relatively large [OIII] luminosity it is likely that the AGN was substantially more luminous in the recent past (<10^4 years ago). The EELR is remarkably extensive and complex, reminiscent of the systems observed around sources at higher redshifts/radio powers, and the gas is predominantly ionised by a mixture of AGN photoionisation and emission from young stars. We confirm the presence of a series of star-forming knots extending N-S from the host galaxy, with more prodigious star formation occuring in the merging companion galaxy to the northeast, which has sufficient luminosity at mid- to far-IR wavelengths to be classified as a LIRG. The most plausible explanation of our observations is that PKS1932-46 is a member of an interacting galaxy group, and that the impressive EELR is populated by star-forming, tidal debris. We suggest that the AGN itself may currently be fuelled by material associated either with the current interaction, or with a previous merger event. Surprisingly, it is the companion object, rather than the radio source host galaxy, which is undergoing the bulk of the star formation activity within the group.
We present the results of spectroscopic and imaging observations of the FRII radio galaxies PKS2250-41 and PKS1932-46. Both sources display very extensive emission line regions, and appear to be undergoing interactions with companion bodies. In addit ion to disturbed gas kinematics associated with interactions with the radio source, the more distant emitting material displays simple, narrow emission line profiles, often at significant velocity offsets from the system rest-frame, and may be associated with tidal debris.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا