ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the problem where a group of n nodes, connected to the same broadcast channel (e.g., a wireless network), want to generate a common secret bitstream, in the presence of an adversary Eve, who tries to obtain information on the bitstream. W e assume that the nodes initially share a (small) piece of information, but do not have access to any out-of-band channel. We ask the question: can this problem be solved without relying on Eves computational limitations, i.e., without using any form of public-key cryptography? We propose a secret-agreement protocol, where the n nodes of the group keep exchanging bits until they have all agreed on a bit sequence that Eve cannot reconstruct with very high probability. In this task, the nodes are assisted by a small number of interferers, whose role is to create channel noise in a way that bounds the amount of information Eve can overhear. Our protocol has polynomial-time complexity and requires no changes to the physical or MAC layer of network devices. First, we formally show that, under standard theoretical assumptions, our protocol is information-theoretically secure, achieves optimal secret-generation rate for n = 2 nodes, and scales well to an arbitrary number of nodes. Second, we adapt our protocol to a small wireless 14-square-meter testbed; we experimentally show that, if Eve uses a standard wireless physical layer and is not too close to any of the nodes, 8 nodes can achieve a secret-generation rate of 38 Kbps. To the best of our knowledge, ours is the first experimental demonstration of information-theoretic secret exchange on a wireless network at a rate beyond a few tens of bits per second.
In the current Internet, there is no clean way for affected parties to react to poor forwarding performance: when a domain violates its Service Level Agreement (SLA) with a contractual partner, the partner must resort to ad-hoc probing-based monitori ng to determine the existence and extent of the violation. Instead, we propose a new, systematic approach to the problem of forwarding-performance verification. Our mechanism relies on voluntary reporting, allowing each domain to disclose its loss and delay performance to its neighbors; it does not disclose any information regarding the participating domains topology or routing policies beyond what is already publicly available. Most importantly, it enables verifiable performance measurements, i.e., domains cannot abuse it to significantly exaggerate their performance. Finally, our mechanism is tunable, allowing each participating domain to determine how many resources to devote to it independently (i.e., without any inter-domain coordination), exposing a controllable trade-off between performance-verification quality and resource consumption. Our mechanism comes at the cost of deploying modest functionality at the participating domains border routers; we show that it requires reasonable processing and memory resources within modern network capabilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا