ترغب بنشر مسار تعليمي؟ اضغط هنا

We estimate rates of solar neutrino-induced neutrons in a DAMA/LIBRA-like detector setup, and find that the needed contribution to explain the annual modulation would require neutrino-induced neutron cross sections several orders of magnitude larger than current calculations indicate. Although these cross sections have never been measured, it is likely that the solar-neutrino effect on DAMA/LIBRA is negligible.
This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrino s and for addressing important physics and astrophysics questions with neutrinos.
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white pap er, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.
The Spallation Neutron Source in Oak Ridge, Tennessee, is designed to produce intense pulsed neutrons for various science and engineering applications. Copious neutrinos are a free by-product. When it reaches full power, the SNS will be the worlds br ightest source of neutrinos in the few tens of MeV range. The proposed CLEAR (Coherent Low Energy A (Nuclear) Recoils) experiment will measure coherent elastic neutral current neutrino-nucleus scattering at the SNS. The physics reach includes tests of the Standard Model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا