ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed m apping of this impurity problem from the Keldysh time contour onto a time-dependent single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to use wave function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration time-dependent Hartree (MCTDH) method and its multi-layer extensions. We find that MCTDH outperforms exact diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of the self-consistent two-time impurity Greens function within the MCTDH second quantization representation.
80 - K. Balzer , M. Eckstein 2014
For the fermionic Hubbard model at strong coupling, we demonstrate that directional transport of localized doublons (repulsively bound pairs of two particles occupying the same site of the crystal lattice) can be achieved by applying an unbiased ac f ield of time-asymmetric (sawtooth-like) shape. The mechanism involves a transition to intermediate states of virtually zero double occupation which are reached by splitting the doublon by fields of the order of the Hubbard interaction. The process is discussed on the basis of numerically exact calculations for small clusters, and we apply it to more complex states to manipulate the charge order pattern of one-dimensional systems.
The nonequilibrium Dyson (or Kadanoff-Baym) equation, which is an equation of motion with long-range memory kernel for real-time Green functions, underlies many numerical approaches based on the Keldysh formalism. In this paper we map the problem of solving the Dyson equation in real-time onto a noninteracting auxiliary Hamiltonian with additional bath degrees of freedom. The solution of the auxiliary model does not require the evaluation of a memory kernel and can thus be implemented in a very memory efficient way. The mapping is derived for a self-energy which is local in space and is thus directly applicable within nonequilibrium dynamical mean-field theory (DMFT). We apply the method to study the interaction quench in the Hubbard model for an optical lattice with a narrow confinement, using inhomogeneous DMFT in combination with second-order weak-coupling perturbation theory. We find that, although the quench excites pronounced density oscillations, signatures of the two-stage relaxation similar to the homogeneous system can be observed by looking at the time-dependent occupations of natural orbitals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا