ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically characterize the collective radiative behaviour of N classical emitters near an interface between different dielectrics that supports the transfer of surface plasmon modes into the far-field of electromagnetic radiation. The phenomen a of superradiance and surface plasmons can be combined to amplify the emitted radiation intensity S as S= A N^2 S_0 compared to a single emitters intensity S_0 in free space. For a practical case study within the paper A=240, compared to A=1 in free space. We furthermore demonstrate that there are collective modes for which the intensity of the emitted radiation is suppressed by two orders of magnitude despite their supperadiant emission characteristics. A method to control the emission characteristics of the system and to switch from super- to sub-radiant behaviour with a suitably detuned external driving field is devised.
We establish a rigorous quantitative connection between (i) the interferometric duality relation for which-way information and fringe visibility and (ii) Heisenbergs uncertainty relation for position and modular momentum. We apply our theory to atom interferometry, wherein spontaneously emitted photons provide which way information, and unambiguously resolve the challenge posed by the metamaterial `perfect lens to complementarity and to the Heisenberg-Bohr interpretation of the Heisenberg microscope thought experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا