ترغب بنشر مسار تعليمي؟ اضغط هنا

370 - A. Barcza , Z. Gercsi , H. Michor 2012
We use neutron diffraction, magnetometry and low temperature heat capacity to probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to establish the origin of the entropy change that occurs at the metamagnetic transition in such c ompounds. We find a large difference between the electronic density of states of the antiferromagnetic and high magnetisation states. The magnetic field-induced entropy change is composed of this contribution and a significant counteracting lattice component, deduced from the presence of negative magnetostriction. In calculating the electronic entropy change, we note the importance of using an accurate model of the electronic density of states, which here varies rapidly close to the Fermi energy.
Using high resolution neutron diffraction and capacitance dilatometry we show that the thermal evolution of the helimagnetic state in CoMnSi is accompanied by a change in inter-atomic distances of up to 2%, the largest ever found in a metallic magnet . Our results and the picture of competing exchange and strongly anisotropic thermal expansion that we use to understand them sheds light on a new mechanism for large magnetoelastic effects that does not require large spin-orbit coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا