ترغب بنشر مسار تعليمي؟ اضغط هنا

A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear, in the form of filament channels, at photospheric polarity inversion lines (PILs). In addition to free energy, this shear also represents magnetic helicity, wh ich is conserved under reconnection. In this paper, we address the problem of filament channel formation and show how they acquire their shear and magnetic helicity. The results of 3D simulations using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) are presented that support the model of filament channel formation by magnetic helicity condensation developed by citet{Antiochos13}. We consider the supergranular twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse-cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity-condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.
161 - K. Knizhnik , M. Luna , K. Muglach 2013
On 20 August 2010 an energetic disturbance triggered damped large-amplitude longitudinal (LAL) oscillations in almost an entire filament. In the present work we analyze this periodic motion in the filament to characterize the damping and restoring me chanism of the oscillation. Our method involves placing slits along the axis of the filament at different angles with respect to the spine of the filament, finding the angle at which the oscillation is clearest, and fitting the resulting oscillation pattern to decaying sinusoidal and Bessel functions. These functions represent the equations of motion of a pendulum damped by mass accretion. With this method we determine the period and the decaying time of the oscillation. Our preliminary results support the theory presented by Luna and Karpen (2012) that the restoring force of LAL oscillations is solar gravity in the tubes where the threads oscillate, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Following an earlier paper, we have determined the magnitude and radius of curvature of the dipped magnetic flux tubes hosting a thread along the filament, as well as the mass accretion rate of the filament threads, via the fitted parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا