ترغب بنشر مسار تعليمي؟ اضغط هنا

This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the informati on-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.
The recent trends of densification and centralized signal processing in radio access networks suggest that future networks may comprise ubiquitous antennas coordinated to form a network-wide gigantic array, referred to as the ubiquitous array (UA). I n this paper, the UA communication techniques are designed and analyzed based on a geometric model. Specifically, the UA is modeled as a continuous circular/spherical array enclosing target users and free-space propagation is assumed. First, consider the estimation of multiuser UA channels induced by user locations. Given single pilot symbols, a novel channel estimation scheme is proposed that decomposes training signals into Fourier/Laplace series and thereby translates multiuser channel estimation into peak detection of a derive function of location. The process is shown to suppress noise. Moreover, it is proved that estimation error due to interference diminishes with the increasing minimum user-separation distance following the power law, where the exponent is 1/3 and 1 for the circular and spherical UA, respectively. If orthogonal pilot sequences are used, channel estimation is found to be perfect. Next, consider channel-conjugate data transmission that maximizes received signal power. The power of interference between two users is shown to decay with the increasing user-separation distance sub-linearly and super-linearly for the circular and spherical UA, respectively. Furthermore, a novel multiuser precoding design is proposed by exciting different phase modes of the UA and controlling the mode weight factors to null interference. The number of available degrees of freedom for interference nulling using the UA is proved to be proportional to the minimum user-separation distance.
The advancements in microwave power transfer (MPT) over past decades have enabled wireless power transfer over long distances. The latest breakthroughs in wireless communication, namely massive MIMO, small cells and millimeter-wave communication, mak e wireless networks suitable platforms for implementing MPT. This can lead to the elimination of the last wires connecting mobile devices to the grid for recharging, thereby tackling a long-standing ICT grand challenge. Furthermore, the seamless integration between MPT and wireless communication opens a new area called wirelessly powered communications (WPC) where many new research directions arise e.g., simultaneous information-and-power transfer, WPC network architectures, and techniques for safe and efficient WPC. This article provides an introduction to WPC by describing the key features of WPC, shedding light on a set of frequently asked questions, and identifying the key design issues and discussing possible solutions.
Spatial interference avoidance is a simple and effective way of mitigating interference in multi-antenna wireless networks. The deployment of this technique requires channel-state information (CSI) feedback from each receiver to all interferers, resu lting in substantial network overhead. To address this issue, this paper proposes the method of distributive control that intelligently allocates CSI bits over multiple feedback links and adapts feedback to channel dynamics. For symmetric channel distributions, it is optimal for each receiver to equally allocate the average sum-feedback rate for different feedback links, thereby decoupling their control. Using the criterion of minimum sum-interference power, the optimal feedback-control policy is shown using stochastic-optimization theory to exhibit opportunism. Specifically, a specific feedback link is turned on only when the corresponding transmit-CSI error is significant or interference-channel gain large, and the optimal number of feedback bits increases with this gain. For high mobility and considering the sphere-cap-quantized-CSI model, the optimal feedback-control policy is shown to perform water-filling in time, where the number of feedback bits increases logarithmically with the corresponding interference-channel gain. Furthermore, we consider asymmetric channel distributions with heterogeneous path losses and high mobility, and prove the existence of a unique optimal policy for jointly controlling multiple feedback links. Given the sphere-cap-quantized-CSI model, this policy is shown to perform water-filling over feedback links. Finally, simulation demonstrates that feedback-control yields significant throughput gains compared with the conventional differential-feedback method.
Interference between nodes is a critical impairment in mobile ad hoc networks (MANETs). This paper studies the role of multiple antennas in mitigating such interference. Specifically, a network is studied in which receivers apply zero-forcing beamfor ming to cancel the strongest interferers. Assuming a network with Poisson distributed transmitters and independent Rayleigh fading channels, the transmission capacity is derived, which gives the maximum number of successful transmissions per unit area. Mathematical tools from stochastic geometry are applied to obtain the asymptotic transmission capacity scaling and characterize the impact of inaccurate channel state information (CSI). It is shown that, if each node cancels L interferers, the transmission capacity decreases as the outage probability to the power of 1/(L+1) as the outage probability vanishes. For fixed outage probability, as L grows, the transmission capacity increases as L to the power of (1-2/alpha) where alpha is the path-loss exponent. Moreover, CSI inaccuracy is shown to have no effect on the transmission capacity scaling as the outage probability vanishes, provided that the CSI training sequence has an appropriate length, which we derived. Numerical results suggest that canceling merely one interferer by each node increases the transmission capacity by an order of magnitude or more, even when the CSI is imperfect.
Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead es pecially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controllers state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controllers state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.
Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
172 - Kaibin Huang , Yan Chen , Bin Chen 2008
In cellular systems using frequency division duplex, growing Internet services cause unbalance of uplink and downlink traffic, resulting in poor uplink spectrum utilization. Addressing this issue, this paper considers overlaying an ad hoc network ont o a cellular uplink network for improving spectrum utilization and spatial reuse efficiency. Transmission capacities of the overlaid networks are analyzed, which are defined as the maximum densities of the ad hoc nodes and mobile users under an outage constraint. Using tools from stochastic geometry, the capacity tradeoff curves for the overlaid networks are shown to be linear. Deploying overlaid networks based on frequency separation is proved to achieve higher network capacities than that based on spatial separation. Furthermore, spatial diversity is shown to enhance network capacities.
Interference between nodes directly limits the capacity of mobile ad hoc networks. This paper focuses on spatial interference cancelation with perfect channel state information (CSI), and analyzes the corresponding network capacity. Specifically, by using multiple antennas, zero-forcing beamforming is applied at each receiver for canceling the strongest interferers. Given spatial interference cancelation, the network transmission capacity is analyzed in this paper, which is defined as the maximum transmitting node density under constraints on outage and the signal-to-interference-noise ratio. Assuming the Poisson distribution for the locations of network nodes and spatially i.i.d. Rayleigh fading channels, mathematical tools from stochastic geometry are applied for deriving scaling laws for transmission capacity. Specifically, for small target outage probability, transmission capacity is proved to increase following a power law, where the exponent is the inverse of the size of antenna array or larger depending on the pass loss exponent. As shown by simulations, spatial interference cancelation increases transmission capacity by an order of magnitude or more even if only one extra antenna is added to each node.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا