ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - Kai Zhang 2013
The location of warm dust producing the Mid-infrared (MIR) emission in Type 1 Active Galactic Nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF_{MIR} =L_{MIR}/L_{bol}) correlates wit h the fundamental parameters of AGN accretion process (such as L_{bol}, black hole mass MBH, and Eddington ratio L/LEdd) and the properties of narrow emission lines (as represented by [O III] 5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). Firstly we find that the luminosity of the [O III] wing component (Lwing) correlates more tightly with the continuum luminosity (L5100) than the luminosity of the line core component (Lcore) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with Lwing/L_{bol} rather than with Lcore/L_{bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF_{MIR} with L_{bol} and MBH, and the lack of dependence of CF_{MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.
112 - Kai Zhang 2011
We use homogeneous samples of radio-quiet Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the connection between the velocity shift and the equivalent width (EW) of the [OIII] 5007 emission line, and their correl ations with physical parameters of active galactic nuclei (AGNs). We find a significant and negative correlation between the EW of the core component, EW(core), and the blueshift of either the core (the peak), the wing, or the total profile of [OIII] emission; it is fairly strong for the blueshift of the total profile particularly. However, both quantities (EW and velocity shift) generally have only weak, if any, correlations with fundamental AGN parameters such as the nuclear continuum luminosity at 5100 L_{5100}, black hole mass (M_{BH}), and the Eddington ratio (L/L_{Edd}); these correlations include the classical Baldwin effect of EW(core), an inverse Baldwin effect of EW(wing), and the relationship between velocity shifts and lratio. Our findings suggest that both the large object-to-object variation in the strength of [OIII] emission and the blueshift--EW(core) connection are not governed primarily by fundamental AGN parameters such as L_{5100}, M_{BH} and L/L_{Edd}. We propose that the ISM conditions of the host galaxies play a major role instead in the diversity of the [OIII] properties in active galaxies. This suggests that the use of[OIII] 5007 luminosity as proxy of AGN luminosity does not depend strongly on the above-mentioned fundamental AGN parameters.
In the unification scheme of Seyfert galaxies, a dusty torus blocks the continuum source and broad line region in Seyfert 2 galaxies. However it is not clear whether or not and to what extent the torus affects the narrow line spectra. In this paper, we show that Seyfert 1 and Seyfert 2 galaxies have different distributions on the [OIII]/H$beta $ vs [NII]/H$alpha$ diagram (BPT diagram) for narrow lines. Seyfert 2 galaxies display a clear left boundary on the BPT diagram and only 7.3% of them lie on the left. By contrast, Seyfert 1 galaxies do not show such a cutoff and 33.0% of them stand on the left side of the boundary. Among Seyfert 1 galaxies, the distribution varies with the extinction to broad lines. As the extinction increases, the distribution on BPT diagram moves to larger [NII]/H$alpha$ value. We interpret this as an evidence for the obscuration of inner dense narrow line region by the dusty torus. We also demonstrate that the [OIII] and broad line luminosity correlation depends on the extinction of broad lines in the way that high extinction objects have lower uncorrected [OIII] luminosities, suggesting that [OIII] is partially obscured in these objects. Therefore, using [OIII] as an indicator for the nuclear luminosity will systematically under-estimate the nuclear luminosity of Seyfert 2 galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا