ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - Jussi M. Kumpula 2008
In complex network research clique percolation, introduced by Palla et al., is a deterministic community detection method, which allows for overlapping communities and is purely based on local topological properties of a network. Here we present a se quential clique percolation algorithm (SCP) to do fast community detection in weighted and unweighted networks, for cliques of a chosen size. This method is based on sequentially inserting the constituent links to the network and simultaneously keeping track of the emerging community structure. Unlike existing algorithms, the SCP method allows for detecting k-clique communities at multiple weight thresholds in a single run, and can simultaneously produce a dendrogram representation of hierarchical community structure. In sparse weighted networks, the SCP algorithm can also be used for implementing the weighted clique percolation method recently introduced by Farkas et al. The computational time of the SCP algorithm scales linearly with the number of k-cliques in the network. As an example, the method is applied to a product association network, revealing its nested community structure.
Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investigate the community structure at variable resolutions. Here, we analyze the resolution limit and multiresolution behavior for two different methods: a q-state Potts method proposed by Reichard and Bornholdt, and a recent multiresolution method by Arenas, Fernandez, and Gomez. These methods are studied analytically, and applied to three test networks using simulated annealing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا