ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several f oreground issues, such as the thermal dust emission. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recent polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio $r$ by considering the polarization rotation angle which can be separated into a background isotropic part and a small anisotropic part. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the self-calibration method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including the anisotropies in the analysis could slightly weaken the constraints on $r$, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle can not be taken into account properly in the analysis, the constraints on $r$ will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.
In this paper we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector $mathcal{L}_{rm cs}sim p_mu A_ u tilde{F}^{ mu u}$ which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the nine-year WMAP, BOOMERanG 2003 and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle $bar{alpha} = -2.12 pm 1.14$ ($1sigma$), indicating an about $2sigma$ significance of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [$Delta{alpha}({bf hat{n}})$] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data can not constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle $C^alpha(0) < 0.035$ from all the CMB datasets. More interestingly, including the anisotropies of rotation angle could lower the best fit value of $r$ and relax the tension on the constraints of $r$ between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on $bar{alpha}$ and $Delta{alpha}({bf hat{n}})$. Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.
137 - Jun-Qing Xia , Yi-Fu Cai , Hong Li 2014
The BICEP2 collaboration reports a detection of primordial cosmic microwave background (CMB) B-mode with a tensor-scalar ratio $r=0.20^{+0.07}_{-0.05}$ (68% C.L.). However, this result is in tension with the recent Planck limit, $r<0.11$ (95% C.L.), on constraining inflation models. In this Letter we consider an inflationary cosmology with a preceding nonsingular bounce which gives rise to observable signatures on primordial perturbations. One interesting phenomenon is that both the primordial scalar and tensor modes can have a step feature on their power spectra, which nicely cancels the tensor excess power on the CMB temperature power spectrum. By performing a global analysis, we obtain the 68% C.L. constraints on the parameters of the model from the Planck+WP and BICEP2 data together: the jump scale $log_{10}(k_{rm b}/{rm Mpc}^{-1})=-2.4pm0.2$ and the spectrum amplitude ratio of bounce-to-inflation $r_Bequiv P_{rm m} / A_{rm s} = 0.71pm0.09$. Our result reveals that the bounce inflation scenario can simultaneously explain the Planck and BICEP2 observations better than the standard $Lambda$CDM model, and can be verified by the future CMB polarization measurements.
169 - Jun-Qing Xia 2013
Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating e xpansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction $beta$. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as $beta < 0.102$ at $95%$ confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ``Union2.1 compilation and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction $beta < 0.052$ ($95%$ C.L.). Interestingly, we also find a non-zero coupling $beta = 0.078 pm 0.022$ ($68%$ C.L.) when we use the Planck, the ``SNLS supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct $H_0$ probes from HST.
100 - Hong Li , Jun-Qing Xia 2013
Recently, the Planck collaboration has released the first cosmological papers providing the highest resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. In this paper we study a phenomenological model which in terpolates between the pure $Lambda$CDM model and the Dvali-Gabadadze-Porrati (DGP) braneworld model with an additional parameter $alpha$. Firstly, we calculate the distance information of Planck data which includes the shift parameter $R$, the acoustic scale $l_A$, and the photon decoupling epoch $z_ast$ in different cosmological models and find that this information is almost independent on the input models we use. Then, we compare the constraints on the free parameter $alpha$ of the DGP model from the distance information of Planck and WMAP data and find that the Planck data with high precision do not improve the constraint on $alpha$, but give the higher median value and the better limit on the current matter density fraction $Omega_m$. Then, combining the distance information of Planck measurement, baryon acoustic oscillations (BAO), type Ia supernovae (SNIa) and the prior on the current Hubble constant (HST), we obtain the tight constraint on the parameter $alpha < 0.20$ at $95%$ confidence level, which implies that the flat DGP model has been ruled out by the current cosmological data. Finally, we allow the additional parameter $alpha < 0$ in our calculations and interestingly obtain $alpha=-0.29pm0.20$ ($68%$ C.L.), which means the current data slightly favor the effective equation of state $w_{rm eff}<-1$. More importantly, the tension between constraints on $H_0$ from different observational data has been eased.
The Planck collaboration has recently published maps of the Cosmic Microwave Background radiation with the highest precision. In the standard flat $Lambda$CDM framework, Planck data show that the Hubble constant $H_0$ is in tension with that measured by the several direct probes on $H_0$. In this paper, we perform a global analysis from the current observational data in the general dark energy models and find that resolving this tension on $H_0$ requires the dark energy model with its equation of state (EoS) $w eq-1$. Firstly, assuming the $w$ to be a constant, the Planck data favor $w < -1$ at about $2,sigma$ confidence level when combining with the supernovae SNLS compilation. And consequently the value derived on $H_0$, $H_0=71.3pm2.0$ ${rm km,s^{-1},Mpc^{-1}}$ (68% C.L.), is consistent with that from direct $H_0$ probes. We then investigate the dark energy model with a time-evolving $w$, and obtain the 68% C.L. constraints $w_0=-0.81pm0.19$ and $w_a=-1.9pm1.1$ from the Planck data and the SNLS compilation. Current data still slightly favor the Quintom dark energy scenario with EoS across the cosmological constant boundary $wequiv-1$.
We use the galaxy angular power spectrum at $zsim0.5-1.2$ from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass $sum{m_ u}$ and the effective number of neutrino species $N_{rm{ eff}}$. This survey has recently benefited from an accurate calibration of the redshift distribution, allowing new measurements of the (non-linear) matter power spectrum in a unique range of scales and redshifts sensitive to neutrino free streaming. Our analysis makes use of a recent model for the effect of neutrinos on the weakly non-linear matter power spectrum derived from accurate N-body simulations. We show that CFHTLS, combined with WMAP7 and a prior on the Hubble constant provides an upper limit of $sum{m_ u}<0.29,$eV and $N_{rm{eff}} =4.17^{+1.62}_{-1.26}$ (2$,sigma$ confidence levels). If we omit smaller scales which may be affected by non-linearities, these constraints become $sum{m_ u}<0.41,$eV and $N_{rm{eff}} =3.98^{+2.02}_{-1.20}$ (2$,sigma$ confidence levels). Finally we show that the addition of other large scale structures probes can further improve these constraints, demonstrating that high redshift large volumes surveys such as CFHTLS are complementary to other cosmological probes of the neutrino mass.
Recently, the WMAP group has published their five-year data and considered the constraints on the time evolving equation of state of dark energy for the first time from the WMAP distance information. In this paper, we study the effectiveness of the u sage of these distance information and find that these compressed CMB information can give similar constraints on dark energy parameters compared with the full CMB power spectrum if dark energy perturbations are included, however, once incorrectly neglecting the dark energy perturbations, the difference of the results are sizable.
198 - Hong Li , Jun-Qing Xia , Jie Liu 2008
Due to the lack of low redshift long Gamma-Ray Bursts (GRBs), the circular problem has been a severe obstacle for using GRBs as cosmological candles. In this paper, we present a new method to deal with such a problem in MCMC global fitting analysis. Assuming that a certain type of correlations between different observables exists in a subsample of GRBs, for the parameters involved in the correlation relation, we treat them as free parameters and determine them simultaneously with cosmological parameters through MCMC analysis on GRB data together with other observational data. Then the circular problem is naturally eliminated in this procedure. We take the Ghirlanda relation as an example while keeping in mind the debate about its physical validity. Together with SNe Ia, WMAP and SDSS data, we include 27 GRBs with the reported Ghirlanda relation in our study, and perform MCMC global fitting. We consider the $Lambda$CDM model and dynamical dark energy models. In each case, in addition to the constraints on the relevant cosmological parameters, we obtain the best fit values as well as the distributions of the correlation parameters $A$ and $C$. We find that the observational data sets other than GRBs can affect $A$ and $C$ considerably through their degeneracies with the cosmological parameters. The results on $A$ and $C$ for different cosmological models are in well agreement within $1sigma$ range. The best fit value of $A$ in all models being analyzed is $Asim 1.53$ with $sigma sim 0.08$. For $C$, we have the best value in the range of $0.94-0.98$ with $sigmasim 0.1$. It is also noted that the distributions of $A$ and $C$ are generally broader than the priors used in many studies in literature. (Abriged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا