ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea-ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, night-side sea ice remains O(10 m) thick and night-side water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earths or smaller. Planets with a water complement similar to Earths would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete day-side dessication. Only planets with a geothermal heat flux lower than Earths, much of their surface covered by continents, and a surface water reservoir O(10 %) of Earths would be susceptible to complete water trapping.
224 - J.Yang 2013
We employ a SUSY-model-independent method to examine the remaining evidence for the low mass dark matter. Using the XENON100s recent result of 224.6 live days $times$ 34kg exposure and PICASSOs result published in 2009, we have obtained a constrain o f couplings, $| {{a_n}} | < 0.6$ and $| {{a_p}} | < 1.0$, corresponding to the spin-dependent cross section of ${sigma_n} < 5.6 times {10^{- 38}}$cm$^{2}$ and ${sigma_p} < 1.6 times {10^{- 37}}$cm$^{2}$. Spin-independent isospin violating dark matter model also failed to reconcile the recent result from XENON100 with the positive results from DAMA and CoGeNT.
The X-ray transient MAXI J1836-194 is a newly-identified Galactic black hole binary candidate. As most X-ray transients, it was discovered at the beginning of an X-ray outburst. After the initial canonical X-ray hard state, the outburst evolved into a hard intermediate state and then went back to the hard state. The existing RATAN-600 radio monitoring observations revealed that it was variable on a timescale of days and had a flat or inverted spectrum, consistent with optically thick synchrotron emission, possibly from a self-absorbed jet in the vicinity of the central compact object. We observed the transient in the hard state near the end of the X-ray outburst with the European VLBI Network (EVN) at 5 GHz and the Chinese VLBI Network (CVN) at 2.3 and 8.3 GHz. The 8.3 GHz observations were carried out at a recording rate of 2048 Mbps using the newly-developed Chinese VLBI data acquisition system (CDAS), twice higher than the recording rate used in the other observations. We successfully detected the low-declination source with a high confidence level in both observations. The source was unresolved (<=0.5 mas), which is in agreement with an AU-scale compact jet.
The Galactic X-ray transient XTE J1752-223 was shown to have properties of black hole binary candidates. As reported in our previous paper, we identified transient and decelerating ejecta in multi-epoch Very Long Baseline Interferometry (VLBI) observ ations with the European VLBI Network (EVN) and the NRAO Very Long Baseline Array (VLBA). Here we present new EVN and VLBA data in which a new transient ejection event and later a stationary component are identified. The latter is interpreted as a reappearance of the radio core/compact jet during the transition from soft to hard X-ray state. This component appears to be highly variable in brightness although effects of tropospheric instabilities might play a role too. We also re-analyze the earlier VLBI data and find that the transient ejecta closer to the core position has significantly higher proper motion, further strengthening the case for strongly decelerating ejecta on the scale of several hundred milli-arcsecond, never observed in X-ray binaries before. Although the distance of the source is not well constrained, it is clear that these ejectas are at least mildly relativistic at the early stages. Moreover, we show the large scale environment of the transient from the Westerbork synthesis array data recorded in parallel during the EVN run.
The upper envelope of the amplitude of the VLBI visibility function usually represents the most compact structural pattern of extragalactic radio sources, in particular, the core-jet morphologies. By fitting the envelope to a circular Gaussian model in ~3000 parsec-scale core-jet structures, we find that the apparent angular size shows significant power-law dependence on the observing frequency (power index n = -0.95 pm 0.37). The dependence is likely to result from synchrotron self-absorption in the inhomogeneous jet and not the free-free absorption (n = -2.5), nor the simple scatter broadening (n leq -2).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا