ترغب بنشر مسار تعليمي؟ اضغط هنا

We review recent progresses in the study of flat band systems, especially focusing on the fundamental physics related to the singularity of the flat bands Bloch wave functions. We first explain that the flat bands can be classified into two classes: singular and nonsingular flat bands, based on the presence or absence of the singularity in the flat bands Bloch wave functions. The singularity is generated by the band crossing of the flat band with another dispersive band. In the singular flat band, one can find special kind of eigenmodes, called the non-contractible loop states and the robust boundary modes, which exhibit nontrivial real space topology. Then, we review the experimental realization of these topological eigenmodes of the flat band in the photonic lattices. While the singularity of the flat band is topologically trivial, we show that the maximum quantum distance around the singularity is a bulk invariant representing the strength of the singularity which protects the robust boundary modes. Finally, we discuss how the maximum quantum distance or the strength of the singularity manifests itself in the anomalous Landau level spreading of the singular flat band when it has a quadratic band-crossing with another band.
We show that flat bands can be categorized into two distinct classes, that is, singular and nonsingular flat bands, by exploiting the singular behavior of their Bloch wave functions in momentum space. In the case of a singular flat band, its Bloch wa ve function possesses immovable discontinuities generated by the band-crossing with other bands, and thus the vector bundle associated with the flat band cannot be defined. This singularity precludes the compact localized states from forming a complete set spanning the flat band. Once the degeneracy at the band crossing point is lifted, the singular flat band becomes dispersive and can acquire a finite Chern number in general, suggesting a new route for obtaining a nearly flat Chern band. On the other hand, the Bloch wave function of a nonsingular flat band has no singularity, and thus forms a vector bundle. A nonsingular flat band can be completely isolated from other bands while preserving the perfect flatness. All one-dimensional flat bands belong to the nonsingular class. We show that a singular flat band displays a novel bulk-boundary correspondence such that the presence of the robust boundary mode is guaranteed by the singularity of the Bloch wave function. Moreover, we develop a general scheme to construct a flat band model Hamiltonian in which one can freely design its singular or nonsingular nature. Finally, we propose a general formula for the compact localized state spanning the flat band, which can be easily implemented in numerics and offer a basis set useful in analyzing correlation effects in flat bands.
The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D winding number, which we call the pole winding number, that specifies the number of robust metallic surface bands in the gap as well as their topological character. The underlying general methodology relies on a simple continuous extrapolation from the bulk to the boundary, while tracking the evolution of Greens functions poles in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch the 3D generalization of the pole winding number by in the context of topological insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا