ترغب بنشر مسار تعليمي؟ اضغط هنا

The First fermi-LAT Catalog of Sources Above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at $>37$ GeV energy bands. Using 62 months of fermi-LAT data, we anal yzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H-test (p-value $sim10^{-77}$), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the 5 observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with p-value $=3times10^{-5}$ ($4.2sigma$). The detection of pulsation is significant above $4sigma$ at $>79$ GeV and above $3sigma$ at $>90$ GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.
49 - Y. Wang , C.W. Ng , J. Takata 2014
There is a growing new class of young spin-down powered pulsars called GeV-quiet soft gamma-ray pulsar; (1) spectral turnover appears around~10MeV, (2) the X-ray spectra of below 20 keV can be described by power law with photon index around 1.2 and ( 3) the light curve in X-ray/soft gamma-ray bands shows single broad pulse. Their emission properties are distinct from the normal gamma-ray pulsars, for which the spectral peak in $ u F_{ u}$ appears in GeV energy bands and the X-ray/gamma-ray light curves show sharp and double (or more) peaks. In this paper, we discuss that X-ray/soft gamma-ray emissions of the GeV-quiet soft gamma-ray pulsars are caused bythe synchrotron radiation of the electron/positron pairs, which are created by the magnetic pair-creation process near the stellar surface. In our model, the viewing geometry is crucial factor to discriminate between the normal gamma-ray pulsars and soft gamma-ray pulsars. Our model suggests that the difference between the magnetic inclination angle ($alpha$) and the Earth viewing angle ($beta$) of the soft gamma-ray pulsars is small, so that the synchrotron emissions from the high magnetic field region around the polar cap region dominates in the observed emissions. Furthermore, the inclination angle of the soft gamma-ray pulsar is relatively small, $alphaleq 30$~degree, and our line of sight is out of the gamma-ray beam emitted via the curvature radiation process in the outer gap. We also analysis the six year $Fermi$ data for four soft gamma-ray pulsars to determine the upper limit of the GeV flux.
127 - J. Takata 2014
We study mechanisms of multi-wavelength emissions (X-ray, GeV and TeV gamma-rays) from the gamma-ray binary LS~5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using four year data of fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in $sim$100-300 MeV bands and $>10$GeV bands are significantly improved. The present data analysis suggests that the 0.1-100GeV emissions from LS~5039 contain three different components; (i) the first component contributes to $<$1GeV emissions around superior conjunction, (ii) the second component dominates in 1-10GeV energy bands and (iii) the third component is compatible to lower energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS~5039 includes a pulsar, we argue that both emissions from magnetospheric outer gap and inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock; Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at Shock-II region.
Temporal changes of X-ray to very-high-energy gamma-ray emissions from the pulsar-Be star binary PSR B1259-63/LS 2883 are studied based on 3-D SPH simulations of pulsar wind interaction with Be-disk and wind. We focus on the periastron passage of the binary and calculate the variation of the synchrotron and inverse-Compton emissions using the simulated shock geometry and pressure distribution of the pulsar wind. The characteristic double-peaked X-ray light curve from observations is reproduced by our simulation under a dense Be disk condition (base density ~10^{-9} g cm^{-3}). We interpret the pre- and post-periastron peaks as being due to a significant increase in the conversion efficiency from pulsar spin down power to the shock-accelerated particle energy at orbital phases when the pulsar crosses the disk before periastron passage, and when the pulsar wind creates a cavity in the disk gas after periastron passage, respectively. On the contrary, in the model TeV light curve, which also shows a double peak feature, the first peak appears around the periastron phase. The possible effects of cooling processes on the TeV light curve are briefly discussed.
We discuss $gamma$-ray emissions from the outer gap accelerators of middle-aged pulsars for part of the series of our studies. A two-dimensional electrodynamic model is used to solve the distribution of accelerating electric fields with electron and positron pair creation and radiation processes in the magnetic meridional plane. We compute the curvature radiation and the synchrotron radiation by solving the evolution of the Lorentz factor and the pitch angle. The calculated spectra are compared with observed phase-averaged spectra. We also use a three-dimensional geometrical model to discuss the pulse profiles. We argue that the outer gap of middle-aged pulsars occupies the whole region between the last-open field lines and the critical magnetic field lines, which are perpendicular to the rotational axis at the light cylinder. We assume that there is no outer gap accelerator inside the light cylinder between the rotational axis and the critical magnetic field lines. For the Geminga pulsar, we demonstrate that the outward curvature radiation dominates in the spectrum above 10 MeV, while the inward synchrotron radiation dominates below 10 MeV. We find that the computed spectrum is consistent with the observations in X-ray through $gamma$-ray bands. With the pulse morphology of the $gamma$-ray emissions, we argue that the inclination angle and the viewing angle for the Geminga pulsar are $alphasim 50^{circ}$ and $xisim 90^{circ}$, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا