ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - Julian Grote 2018
Fix a space dimension $dge 2$, parameters $alpha > -1$ and $beta ge 1$, and let $gamma_{d,alpha, beta}$ be the probability measure of an isotropic random vector in $mathbb{R}^d$ with density proportional to begin{align*} ||x||^alpha, expleft(-frac{|x |^beta}{beta}right), qquad xin mathbb{R}^d. end{align*} By $K_lambda$, we denote the Generalized Gamma Polytope arising as the random convex hull of a Poisson point process in $mathbb{R}^d$ with intensity measure $lambdagamma_{d,alpha,beta}$, $lambda>0$. We establish that the scaling limit of the boundary of $K_lambda$, as $lambda rightarrow infty$, is given by a universal `festoon of piecewise parabolic surfaces, independent of $alpha$ and $beta$. Moreover, we state a list of other large scale asymptotic results, including expectation and variance asymptotics, central limit theorems, concentration inequalities, Marcinkiewicz-Zygmund-type strong laws of large numbers, as well as moderate deviation principles for the intrinsic volumes and face numbers of $K_lambda$.
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and t he volume of the random convex hull of $X_1,ldots,X_{r+1}$ are established in high dimensions, that is, as $r$ and $n$ tend to infinity simultaneously. This includes, Berry-Esseen-type central limit theorems, log-normal limit theorems, moderate and large deviations. Also different types of mod-$phi$ convergence are derived. The results heavily depend on the asymptotic growth of $r$ relative to $n$. For example, we prove that the fluctuations of the volume of the simplex are normal (respectively, log-normal) if $r=o(n)$ (respectively, $rsim alpha n$ for some $0 < alpha < 1$).
Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmet ric difference metric by an arbitrarily positioned polytope $P_f$ in $mathbb{R}^n$ having a fixed number of vertices. This generalizes a result by Ludwig, Schutt and Werner $[36]$. The polytope $P_f$ is obtained by a random construction via a probability measure with density $f$. In our result, the dependence on the number of vertices is optimal. With the optimal density $f$, the dependence on $K$ in our result is also optimal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا